Grindability of Quartz under Compressive and Impact Forces

A. Seifelnassr, A. Abouzeid, G. Abdalla
{"title":"Grindability of Quartz under Compressive and Impact Forces","authors":"A. Seifelnassr, A. Abouzeid, G. Abdalla","doi":"10.21608/jpme.2020.28947.1032","DOIUrl":null,"url":null,"abstract":"Abstract: This paper presents a comparative study between the grindabiltiy of quartz by compression and impact forces as two different modes of size reduction in mineral comminution. The compression tests are carried out in a piston die, and the impact tests are performed using a stamp mill. Two quartz size fractions, (-6.3+4.75mm) and (-2.36+1.7mm) at sample weights of 150 and 100 grams were used for comparison of the behavior of quartz under the two different modes of material disintegration forces. The obtained results showed that the cumulative weight of the product size distributions is reasonably normalizable with respect to the median particle size, X50, for both compression and impact modes. The specific energy expended is inversely proportional to the median size of the products, and the reduction ratios (RR), X50f/X50p, are directly proportional to the applied forces in both grinding modes, and hence, to the specific energy expended. However, under the studied conditions, there is superiority of grinding by impact force, particularly at the high energy levels, over compression grinding in terms of reduction ratios and the fineness of the ground product. Analysis of the results points to conclusions concerning the choice of grinding equipment ensuring the most beneficial course of the size reduction process for a specific job.","PeriodicalId":34437,"journal":{"name":"Journal of Petroleum and Mining Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum and Mining Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/jpme.2020.28947.1032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract: This paper presents a comparative study between the grindabiltiy of quartz by compression and impact forces as two different modes of size reduction in mineral comminution. The compression tests are carried out in a piston die, and the impact tests are performed using a stamp mill. Two quartz size fractions, (-6.3+4.75mm) and (-2.36+1.7mm) at sample weights of 150 and 100 grams were used for comparison of the behavior of quartz under the two different modes of material disintegration forces. The obtained results showed that the cumulative weight of the product size distributions is reasonably normalizable with respect to the median particle size, X50, for both compression and impact modes. The specific energy expended is inversely proportional to the median size of the products, and the reduction ratios (RR), X50f/X50p, are directly proportional to the applied forces in both grinding modes, and hence, to the specific energy expended. However, under the studied conditions, there is superiority of grinding by impact force, particularly at the high energy levels, over compression grinding in terms of reduction ratios and the fineness of the ground product. Analysis of the results points to conclusions concerning the choice of grinding equipment ensuring the most beneficial course of the size reduction process for a specific job.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
石英在压缩力和冲击力作用下的可磨性
摘要:本文对矿物粉碎过程中压缩力和冲击力两种不同粉碎方式下石英的可磨性进行了对比研究。压缩试验在活塞模具中进行,冲击试验在冲压机上进行。在样品质量为150和100 g时,石英粒径为(-6.3+4.75mm)和(-2.36+1.7mm),比较了石英在两种不同的材料崩解力模式下的行为。所得结果表明,对于压缩和冲击两种模式,产品粒度分布的累积重量相对于中位数粒度X50是合理归一化的。消耗的比能量与产品的中位数尺寸成反比,而减小比(RR) X50f/X50p与两种磨削模式下的作用力成正比,因此与消耗的比能量成正比。然而,在所研究的条件下,冲击力磨削,特别是在高能量水平下,在压缩比和研磨产品的细度方面优于压缩磨削。通过对结果的分析,得出了有关选择磨削设备的结论,以确保对特定作业的尺寸减小过程最有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
8
审稿时长
6 weeks
期刊最新文献
Maximizing CO2-EOR Potential for Carbonate Reservoir, Horus Field, Western Desert, Egypt A review on the Use Nano Technology for Enhancing Compressive Strength of Cement in Oil and Gas Industry. Reducing Well Deliverability Time and Drilling Costs using Casing While Drilling Operations, West Kuwait A Comprehensive Review of Traditional, Modern and Advanced Presplit Drilling and Blasting in the Mining and Construction Industries Investigation into the Use of Thevetia Peruviana seed oil for Surfactant Flooding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1