Adaptive Identification and Application of Flow Mapping and Inverse Flow Mapping for Electrohydraulic Valves

IF 0.7 Q4 ENGINEERING, MECHANICAL International Journal of Fluid Power Pub Date : 2021-11-20 DOI:10.13052/ijfp1439-9776.2315
Jianbin Liu, André Sitte, J. Weber
{"title":"Adaptive Identification and Application of Flow Mapping and Inverse Flow Mapping for Electrohydraulic Valves","authors":"Jianbin Liu, André Sitte, J. Weber","doi":"10.13052/ijfp1439-9776.2315","DOIUrl":null,"url":null,"abstract":"Good estimation of flow mapping (FM) and inverse flow mapping (IFM) for electrohydraulic valves are important in automation of fluid power system. The purpose of this paper is to propose adaptive identification methods based on LSM, BPNN, RBFNN, GRNN, LSSVM and RLSM to estimate the uncertain structure and parameters in flow mapping and inverse flow mapping for electrohydraulic valves. In order to reduce the complexity and improve the identification performance, model structures derived from new algorithm are introduced. The above identification methods are applied to map the flow characteristic of an electrohydraulic valve. With the help of novel simulation architecture via OPC UA, the accuracy and efficiency of these algorithms could be verified. Some issues like invertibility of flow mapping are discussed. At last, places and suggestions to apply these methods are made.","PeriodicalId":13977,"journal":{"name":"International Journal of Fluid Power","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fluid Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/ijfp1439-9776.2315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Good estimation of flow mapping (FM) and inverse flow mapping (IFM) for electrohydraulic valves are important in automation of fluid power system. The purpose of this paper is to propose adaptive identification methods based on LSM, BPNN, RBFNN, GRNN, LSSVM and RLSM to estimate the uncertain structure and parameters in flow mapping and inverse flow mapping for electrohydraulic valves. In order to reduce the complexity and improve the identification performance, model structures derived from new algorithm are introduced. The above identification methods are applied to map the flow characteristic of an electrohydraulic valve. With the help of novel simulation architecture via OPC UA, the accuracy and efficiency of these algorithms could be verified. Some issues like invertibility of flow mapping are discussed. At last, places and suggestions to apply these methods are made.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电液阀流量映射和逆流量映射的自适应识别及应用
电液阀流量映射(FM)和反流量映射(IFM)的正确估计在流体动力系统自动化中具有重要意义。本文的目的是提出基于LSM、BPNN、RBFNN、GRNN、LSSVM和RLSM的自适应辨识方法来估计电液阀流量映射和反流量映射中的不确定结构和参数。为了降低识别复杂度和提高识别性能,引入了新算法衍生的模型结构。将上述识别方法应用于电液阀的流量特性图。借助基于OPC UA的新型仿真架构,验证了这些算法的准确性和高效性。讨论了流映射的可逆性等问题。最后提出了应用这些方法的地方和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fluid Power
International Journal of Fluid Power ENGINEERING, MECHANICAL-
CiteScore
1.60
自引率
0.00%
发文量
16
期刊最新文献
A Review of Pilot-operated Hydraulic Valves – Development, Challenges, and a Comparative Study Facilitating Energy Monitoring and Fault Diagnosis of Pneumatic Cylinders with Exergy and Machine Learning Performance Analysis of a Pressurized Assembly with a Reinforced O-ring Hydrodynamic Analysis of Shallow Water Sloshing in Ship Chamber Under Longitudinal Earthquake Effect of Blowing Ratio on Turbine Blade Air Film Cooling Under Different Engine Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1