19F MAS NMR study on anion intercalation into graphite positive electrodes from binary-mixed highly concentrated electrolytes

IF 5.4 Q2 CHEMISTRY, PHYSICAL Journal of Power Sources Advances Pub Date : 2021-12-01 DOI:10.1016/j.powera.2021.100075
Joop Enno Frerichs , Lukas Haneke , Martin Winter , Michael Ryan Hansen , Tobias Placke
{"title":"19F MAS NMR study on anion intercalation into graphite positive electrodes from binary-mixed highly concentrated electrolytes","authors":"Joop Enno Frerichs ,&nbsp;Lukas Haneke ,&nbsp;Martin Winter ,&nbsp;Michael Ryan Hansen ,&nbsp;Tobias Placke","doi":"10.1016/j.powera.2021.100075","DOIUrl":null,"url":null,"abstract":"<div><p>Dual-graphite batteries (DGBs), which are based on anion intercalation into graphite positive electrodes, exhibit great potential for stationary energy storage due to use of more sustainable and low-cost electrode materials and processing routes. Binary-mixed highly concentrated electrolytes (HCEs) appeal highly suitable for the high operating voltages of DGBs, although the lack of sufficient insights into the formation of graphite intercalation compounds (GICs) limits the cell performance in terms of specific capacity and lifetime so far. Herein, anion intercalation from single-salt HCEs (LiPF<sub>6</sub> and LiBF<sub>4</sub>) and an equimolar binary mixture of LiPF<sub>6</sub>/LiBF<sub>4</sub> are studied in graphite || Li metal cells, revealing an improved performance in terms of specific capacity and Coulombic efficiency in the order LiPF<sub>6</sub> &gt; LiPF<sub>6</sub>/LiBF<sub>4</sub> &gt; LiBF<sub>4</sub>. LiBF<sub>4</sub>-based cells exhibit an increased onset potential for anion intercalation and higher area specific impedance, suggesting an ineffective interphase formation at graphite. X-ray diffraction reveals GIC formation, while a lower stage number is achieved for the LiBF<sub>4</sub>-based HCE. <sup>19</sup>F MAS NMR spectroscopy analysis at various states-of-charge confirms no significant charge transfer between the intercalated anions and the graphite host and suggest preferred intercalation of PF<sub>6</sub><sup>-</sup> compared to BF<sub>4</sub><sup>-</sup> as well as a high translational and/or rotational mobility of the intercalated anions.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"12 ","pages":"Article 100075"},"PeriodicalIF":5.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248521000305/pdfft?md5=32e636ff8cb267e6838e4d02f69c1801&pid=1-s2.0-S2666248521000305-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248521000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Dual-graphite batteries (DGBs), which are based on anion intercalation into graphite positive electrodes, exhibit great potential for stationary energy storage due to use of more sustainable and low-cost electrode materials and processing routes. Binary-mixed highly concentrated electrolytes (HCEs) appeal highly suitable for the high operating voltages of DGBs, although the lack of sufficient insights into the formation of graphite intercalation compounds (GICs) limits the cell performance in terms of specific capacity and lifetime so far. Herein, anion intercalation from single-salt HCEs (LiPF6 and LiBF4) and an equimolar binary mixture of LiPF6/LiBF4 are studied in graphite || Li metal cells, revealing an improved performance in terms of specific capacity and Coulombic efficiency in the order LiPF6 > LiPF6/LiBF4 > LiBF4. LiBF4-based cells exhibit an increased onset potential for anion intercalation and higher area specific impedance, suggesting an ineffective interphase formation at graphite. X-ray diffraction reveals GIC formation, while a lower stage number is achieved for the LiBF4-based HCE. 19F MAS NMR spectroscopy analysis at various states-of-charge confirms no significant charge transfer between the intercalated anions and the graphite host and suggest preferred intercalation of PF6- compared to BF4- as well as a high translational and/or rotational mobility of the intercalated anions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高浓度二元混合电解质负离子嵌入石墨正极的19fmas NMR研究
双石墨电池(DGBs)是一种基于负离子插入石墨正极的电池,由于使用了更可持续和低成本的电极材料和加工路线,在固定储能方面表现出巨大的潜力。二元混合的高浓度电解质(HCEs)非常适合dgb的高工作电压,尽管迄今为止缺乏对石墨插层化合物(gic)形成的充分了解限制了电池在比容量和寿命方面的性能。本文研究了单盐HCEs (LiPF6和LiBF4)和LiPF6/LiBF4等摩尔二元混合物在石墨锂金属电池中的阴离子插入,揭示了LiPF6和LiBF4顺序在比容量和库仑效率方面的性能提高;LiPF6 / LiBF4比;LiBF4。基于libf4的细胞表现出更高的阴离子插入电位和更高的面积比阻抗,表明石墨层间相形成无效。x射线衍射显示GIC形成,而基于libf4的HCE达到了较低的级数。在各种电荷状态下的19F MAS NMR分析证实了插入阴离子和石墨宿主之间没有明显的电荷转移,并且表明与BF4相比,PF6更倾向于插入,并且插入阴离子具有较高的平移和/或旋转迁移率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
期刊最新文献
Formulating PEO-polycarbonate blends as solid polymer electrolytes by solvent-free extrusion Enhancing performance and sustainability of lithium manganese oxide cathodes with a poly(ionic liquid) binder and ionic liquid electrolyte Enhancing the stability of sodium-ion capacitors by introducing glyoxylic-acetal based electrolyte The implementation of a voltage-based tunneling mechanism in aging models for lithium-ion batteries Electronic structure evolution upon lithiation: A Li K-edge study of silicon oxide anode through X-ray Raman spectroscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1