Using Iron-copper Nanocomposites Prepared by Peanut Vine Extracts for the Removal of Pefloxacin and Enrofloxacin from an Aqueous Solution: Isotherms, Kinetics, and Mechanism
{"title":"Using Iron-copper Nanocomposites Prepared by Peanut Vine Extracts for the Removal of Pefloxacin and Enrofloxacin from an Aqueous Solution: Isotherms, Kinetics, and Mechanism","authors":"Yuanyuan Niu, Xiuli Han, Chun Chang, Junying Chen","doi":"10.22036/PCR.2021.246397.1825","DOIUrl":null,"url":null,"abstract":"Herein, A facile and green approach was employed to fabricate iron-copper nanocomposites (ICNCs) using peanut vine extracts, and the ICNCs were used for the removal of pefloxacin (PFX) and enrofloxacin (ENR) from aqueous solution. Following this, ICNCs were comprehensively characterized by BET, XPS, SEM, FT-IR and EDS. The equilibrium adsorption data of PFX and ENR on ICNCs were well described by Langmuir and Sips isotherm models, and thermodynamics parameters revealed the spontaneous and endothermic nature of PFX and ENR adsorption processes. Kinetic data were best fitted by pseudo-second-order model. Hydrogen bonding, π-π and n-π electron-donor-acceptor interaction, complexation and electrostatic interaction were the main forces in adsorption processes of ICNCs. The maximum monolayer adsorption capacities of ICNCs for PFX and ENR were 240.70 and 195.97 mg/g at 298 K, respectively, indicating that ICNCs is a promising adsorbent for PFX or ENR removal in wastewater treatment.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":"9 1","pages":"327-344"},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2021.246397.1825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Herein, A facile and green approach was employed to fabricate iron-copper nanocomposites (ICNCs) using peanut vine extracts, and the ICNCs were used for the removal of pefloxacin (PFX) and enrofloxacin (ENR) from aqueous solution. Following this, ICNCs were comprehensively characterized by BET, XPS, SEM, FT-IR and EDS. The equilibrium adsorption data of PFX and ENR on ICNCs were well described by Langmuir and Sips isotherm models, and thermodynamics parameters revealed the spontaneous and endothermic nature of PFX and ENR adsorption processes. Kinetic data were best fitted by pseudo-second-order model. Hydrogen bonding, π-π and n-π electron-donor-acceptor interaction, complexation and electrostatic interaction were the main forces in adsorption processes of ICNCs. The maximum monolayer adsorption capacities of ICNCs for PFX and ENR were 240.70 and 195.97 mg/g at 298 K, respectively, indicating that ICNCs is a promising adsorbent for PFX or ENR removal in wastewater treatment.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.