Christer Stenström, Kjell Eriksson, Florin Bobaru, Stefan Golling, Pär Jonsén
{"title":"The essential work of fracture in peridynamics","authors":"Christer Stenström, Kjell Eriksson, Florin Bobaru, Stefan Golling, Pär Jonsén","doi":"10.1007/s10704-023-00705-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the essential work of fracture (EWF) method is introduced for a peridynamic (PD) material model to characterize fracture toughness of ductile materials. First, an analytical derivation for the path-independence of the PD <i>J</i>-integral is provided. Thereafter, the classical <i>J</i>-integral and PD <i>J</i>-integral are computed on a number of analytical crack problems, for subsequent investigation on how it performs under large scale yielding of thin sheets. To represent a highly nonlinear elastic behavior, a new adaptive bond stiffness calibration and a modified bond-damage model with gradual softening are proposed. The model is employed for two different materials: a lower-ductility bainitic-martensitic steel and a higher-ductility bainitic steel. Up to the start of the softening phase, the PD model recovers the experimentally obtained stress–strain response of both materials. Due to the high failure sensitivity on the presence of defects for the lower-ductility material, the PD model could not recover the experimentally obtained EWF values. For the higher-ductility bainitic material, the PD model was able to match very well the experimentally obtained EWF values. Moreover, the <i>J</i>-integral value obtained from the PD model, at the absolute maximum specimen load, matched the corresponding EWF value.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"242 2","pages":"129 - 152"},"PeriodicalIF":2.2000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-023-00705-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00705-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the essential work of fracture (EWF) method is introduced for a peridynamic (PD) material model to characterize fracture toughness of ductile materials. First, an analytical derivation for the path-independence of the PD J-integral is provided. Thereafter, the classical J-integral and PD J-integral are computed on a number of analytical crack problems, for subsequent investigation on how it performs under large scale yielding of thin sheets. To represent a highly nonlinear elastic behavior, a new adaptive bond stiffness calibration and a modified bond-damage model with gradual softening are proposed. The model is employed for two different materials: a lower-ductility bainitic-martensitic steel and a higher-ductility bainitic steel. Up to the start of the softening phase, the PD model recovers the experimentally obtained stress–strain response of both materials. Due to the high failure sensitivity on the presence of defects for the lower-ductility material, the PD model could not recover the experimentally obtained EWF values. For the higher-ductility bainitic material, the PD model was able to match very well the experimentally obtained EWF values. Moreover, the J-integral value obtained from the PD model, at the absolute maximum specimen load, matched the corresponding EWF value.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.