Comparison of approaches based on the Williamson-Hall method for analyzing the structure of an Al0.3CoCrFeNi high-entropy alloy after cold deformation

IF 0.4 Q4 METALLURGY & METALLURGICAL ENGINEERING Obrabotka Metallov-Metal Working and Material Science Pub Date : 2022-09-15 DOI:10.17212/1994-6309-2022-24.3-90-102
I. Ivanov, D. Safarova, Z. Bataeva, I. Bataev
{"title":"Comparison of approaches based on the Williamson-Hall method for analyzing the structure of an Al0.3CoCrFeNi high-entropy alloy after cold deformation","authors":"I. Ivanov, D. Safarova, Z. Bataeva, I. Bataev","doi":"10.17212/1994-6309-2022-24.3-90-102","DOIUrl":null,"url":null,"abstract":"Introduction. High-entropy alloys (HEAs) belong to a new and promising class of materials that are attracting the attention of both scientists and engineers from all over the world. Among all alloys of the AlxCoCrFeNi system, HEAs with x ≤ 0.3 attract special attention. Materials with this composition are characterized by the presence of only one phase with a face-centered cubic lattice (FCC). Such alloys have high ductility, excellent corrosion resistance and phase stability at high temperatures. The purpose of this work is to compare several methods of profile analysis on the example of plastically deformed ingots of a high-entropy Al0.3CoCrFeNi alloy. The methods of investigation. Using several methods of profile analysis of X-ray diffraction patterns, the structures of the cold-worked high-entropy alloy Al0.3CoCrFeNi are studied. In addition to the classical Williamson-Hall method, the analysis was carried out using a modified one, as well as a method that takes into account the anisotropy of the elastic properties of the crystal lattice. Research material. Ingots of the high-entropy Al0.3CoCrFeNi alloy deformed by cold rolling with a maximum reduction ratio of 80% were used as the object of the study. Samples were cut from the obtained blanks, which were studied by the method of synchrotron radiation diffraction according to the “transmission” scheme along two (longitudinal (RD) and transverse (TD)) directions of rolled products. Results and discussion. It is shown that the use of the classical Williamson-Hall method leads to a significant error in the approximation of experimental results. The modified Williamson-Hall method has the smallest approximation error and can be recommended for studying the Al0.3CoCrFeNi alloy. An analysis of deformed samples using this method made it possible to reveal several features of the formation of defects in the crystalline structure, which are in good agreement with the classical concepts of the mechanisms of plastic deformation. First, an increase in the degree of deformation of the high-entropy Al0.3CoCrFeNi alloy leads to an almost uniform increase in the number of twins and stacking faults. Secondly, with an increase in the degree of reduction, there is a decrease in the fraction of edge dislocations and an increase in the fraction of screw dislocations in the material. The results obtained correlate well with the results of microhardness measurements.","PeriodicalId":42889,"journal":{"name":"Obrabotka Metallov-Metal Working and Material Science","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Obrabotka Metallov-Metal Working and Material Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/1994-6309-2022-24.3-90-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction. High-entropy alloys (HEAs) belong to a new and promising class of materials that are attracting the attention of both scientists and engineers from all over the world. Among all alloys of the AlxCoCrFeNi system, HEAs with x ≤ 0.3 attract special attention. Materials with this composition are characterized by the presence of only one phase with a face-centered cubic lattice (FCC). Such alloys have high ductility, excellent corrosion resistance and phase stability at high temperatures. The purpose of this work is to compare several methods of profile analysis on the example of plastically deformed ingots of a high-entropy Al0.3CoCrFeNi alloy. The methods of investigation. Using several methods of profile analysis of X-ray diffraction patterns, the structures of the cold-worked high-entropy alloy Al0.3CoCrFeNi are studied. In addition to the classical Williamson-Hall method, the analysis was carried out using a modified one, as well as a method that takes into account the anisotropy of the elastic properties of the crystal lattice. Research material. Ingots of the high-entropy Al0.3CoCrFeNi alloy deformed by cold rolling with a maximum reduction ratio of 80% were used as the object of the study. Samples were cut from the obtained blanks, which were studied by the method of synchrotron radiation diffraction according to the “transmission” scheme along two (longitudinal (RD) and transverse (TD)) directions of rolled products. Results and discussion. It is shown that the use of the classical Williamson-Hall method leads to a significant error in the approximation of experimental results. The modified Williamson-Hall method has the smallest approximation error and can be recommended for studying the Al0.3CoCrFeNi alloy. An analysis of deformed samples using this method made it possible to reveal several features of the formation of defects in the crystalline structure, which are in good agreement with the classical concepts of the mechanisms of plastic deformation. First, an increase in the degree of deformation of the high-entropy Al0.3CoCrFeNi alloy leads to an almost uniform increase in the number of twins and stacking faults. Secondly, with an increase in the degree of reduction, there is a decrease in the fraction of edge dislocations and an increase in the fraction of screw dislocations in the material. The results obtained correlate well with the results of microhardness measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Williamson-Hall法分析Al0.3CoCrFeNi高熵合金冷变形后组织的方法比较
介绍高熵合金(HEAs)是一类新的、有前途的材料,受到了世界各地科学家和工程师的关注。在AlxCoCrFeNi系的所有合金中,x≤0.3的HEAs引起了特别的关注。具有这种组成的材料的特征在于仅存在一个具有面心立方晶格(FCC)的相。这种合金具有高延展性、优异的耐腐蚀性和在高温下的相稳定性。本工作的目的是以高熵Al0.3CoCrFeNi合金塑性变形铸锭为例,比较几种轮廓分析方法。调查方法。利用X射线衍射图谱的几种轮廓分析方法,研究了冷加工高熵合金Al0.3CoCrFeNi的组织。除了经典的Williamson-Hall方法外,还使用了一种改进的方法以及一种考虑晶格弹性特性各向异性的方法进行了分析。研究材料。以最大压下率为80%的冷轧高熵Al0.3CoCrFeNi合金铸锭为研究对象。从获得的坯料中切割样品,根据轧制产品的两个(纵向(RD)和横向(TD))方向的“透射”方案,通过同步辐射衍射方法对其进行研究。结果和讨论。结果表明,使用经典的Williamson-Hall方法会导致实验结果的近似出现显著误差。改进的Williamson-Hall方法具有最小的近似误差,可以推荐用于研究Al0.3CoCrFeNi合金。使用这种方法对变形样品进行分析,可以揭示晶体结构中缺陷形成的几个特征,这些特征与塑性变形机制的经典概念非常一致。首先,高熵Al0.3CoCrFeNi合金变形程度的增加导致孪晶和层错数量的几乎均匀增加。其次,随着还原度的增加,材料中边缘位错的比例降低,螺旋位错的比例增加。所得结果与显微硬度测量结果吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Obrabotka Metallov-Metal Working and Material Science
Obrabotka Metallov-Metal Working and Material Science METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
50.00%
发文量
26
期刊最新文献
Free vibration and mechanical behavior of treated woven jute polymer composite Analysis of mechanical behavior and free vibration characteristics of treated Saccharum munja fiber polymer composite Synthesis of Ti–Fe intermetallic compounds from elemental powders mixtures The concept of microsimulation of processes of joining dissimilar materials by plastic deformation Experimental studies of high-speed grinding rails modes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1