E. R. Zhiganshina, M. V. Arsenyev, S. A. Chesnokov
{"title":"Two-Photon Stereolithography—Optical Nanolithography","authors":"E. R. Zhiganshina, M. V. Arsenyev, S. A. Chesnokov","doi":"10.1134/S1560090423700999","DOIUrl":null,"url":null,"abstract":"<p>Free-radical photopolymerization has been widely used in additive technologies, in particular, stereolithography using single- and two-photon initiated polymerization. The single-photon stereolithography affords the objects with about 100 μm resolution. The two-photon stereolithography initiated with a femtosecond near-infrared laser can afford arbitrary 3D microstructures with ultrahigh resolution at micro- and nanoscale level (~100 nm). Herein each of the mentioned method and the mechanisms of single- and two-photon excitation are reviewed. The recent results on the components of the photopolymerizable resin as well as the approaches to decrease the size of the elements of objects and accelerate their formation have been generalizated and systematized.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"65 3","pages":"247 - 269"},"PeriodicalIF":1.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090423700999","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Free-radical photopolymerization has been widely used in additive technologies, in particular, stereolithography using single- and two-photon initiated polymerization. The single-photon stereolithography affords the objects with about 100 μm resolution. The two-photon stereolithography initiated with a femtosecond near-infrared laser can afford arbitrary 3D microstructures with ultrahigh resolution at micro- and nanoscale level (~100 nm). Herein each of the mentioned method and the mechanisms of single- and two-photon excitation are reviewed. The recent results on the components of the photopolymerizable resin as well as the approaches to decrease the size of the elements of objects and accelerate their formation have been generalizated and systematized.
期刊介绍:
Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed