{"title":"Analysis of a normal and aero helmet on an elite cyclist in the dropped position","authors":"Pedro Forte, D. Marinho, T. Barbosa, J. Morais","doi":"10.3934/biophy.2020005","DOIUrl":null,"url":null,"abstract":"Cyclists use to wear different helmets and adopt different body positions on the bicycle to minimize resistance. The aim of this study was to compare a standard helmet with the new aero road helmets in a bicycle-cyclist system by CFD on the dropped position. An elite level road cyclist volunteered to this research. The cyclist was scanned on his racing bicycle on the dropped position wearing competition gear and a standard helmet and an aero road helmet. A three-dimensional domain around the cyclist with 7 m of length, 2.5 m of width and 2.5 m of height and meshed with more than 43 million of prismatic and tetrahedral elements. The numerical simulations were conducted at 11.11 m/s. The numerical simulations outputs were viscous, pressure and total drag and coefficient of drag. The standard helmet presented a viscous drag of 10.52 N, a pressure drag of 16.51 N and a total drag of 21.98 N. The aero road helmet presented a pressure drag of 7.40 N, a viscous drag of 12.56 N and a total drag of 19.96 N. Moreover, the aero road helmet presented a lower viscous, pressure and total drag coefficient in comparison to the standard helmet. It is possible to conclude that an aero road helmet imposes less drag in comparison to a standard helmet.","PeriodicalId":7529,"journal":{"name":"AIMS Biophysics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2020-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/biophy.2020005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 4
Abstract
Cyclists use to wear different helmets and adopt different body positions on the bicycle to minimize resistance. The aim of this study was to compare a standard helmet with the new aero road helmets in a bicycle-cyclist system by CFD on the dropped position. An elite level road cyclist volunteered to this research. The cyclist was scanned on his racing bicycle on the dropped position wearing competition gear and a standard helmet and an aero road helmet. A three-dimensional domain around the cyclist with 7 m of length, 2.5 m of width and 2.5 m of height and meshed with more than 43 million of prismatic and tetrahedral elements. The numerical simulations were conducted at 11.11 m/s. The numerical simulations outputs were viscous, pressure and total drag and coefficient of drag. The standard helmet presented a viscous drag of 10.52 N, a pressure drag of 16.51 N and a total drag of 21.98 N. The aero road helmet presented a pressure drag of 7.40 N, a viscous drag of 12.56 N and a total drag of 19.96 N. Moreover, the aero road helmet presented a lower viscous, pressure and total drag coefficient in comparison to the standard helmet. It is possible to conclude that an aero road helmet imposes less drag in comparison to a standard helmet.
期刊介绍:
AIMS Biophysics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of biophysics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Biophysics welcomes, but not limited to, the papers from the following topics: · Structural biology · Biophysical technology · Bioenergetics · Membrane biophysics · Cellular Biophysics · Electrophysiology · Neuro-Biophysics · Biomechanics · Systems biology