{"title":"Novel Tube Design for Superheater Heat Exchanger Enabled via Additive Manufacturing","authors":"Vanshika Singh, S. Babu, M. Kirka, A. Kulkarni","doi":"10.1115/1.4054727","DOIUrl":null,"url":null,"abstract":"\n Superheater tubes are critical boiler components that operate at relatively higher temperatures and pressure. Amongst the primary concerns for these tubes is the deposition of ash particles on the tube surface, leading to the reduced thickness of the tube due to material corrosion, consequently causing early creep failure of the component. In this research, a novel tube design has been proposed which resembles a teardrop or ogive shape to reduce the drag and concurrently improve the creep life of the superheater tubes. To administer the practicality of novel tubes, metal Additive Manufacturing, for instance, Laser-Powder Bed Fusion, has been proposed. These unconventional designs were assessed and compared with the baseline circular tube design for mechanical design requirements and the particle and flue gas flow characteristics around the differently shaped tubes. A thermo-mechanical Finite Element Analysis (FEA) was performed for hoop stress calculations. This study also emphasizes on effect of circumferential thermal variation on hoop stress distribution in tubes. Therefore, a detailed 2D thermal simulation has been performed to report the circumferential thermal variation on the tube. A Computational Fluid Dynamics (CFD) analysis coupled with particle tracing was performed for gas flow visualization and particle tracing around the proposed shapes and baseline circular-shaped tube design. The Schlieren Optic setup was built and leveraged for qualitative validation of the proposed design. The complete design methodology established in the paper shows teardrop-shaped tubes better in terms of drag and creep life in contrast to the circular-shaped tube.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4054727","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Superheater tubes are critical boiler components that operate at relatively higher temperatures and pressure. Amongst the primary concerns for these tubes is the deposition of ash particles on the tube surface, leading to the reduced thickness of the tube due to material corrosion, consequently causing early creep failure of the component. In this research, a novel tube design has been proposed which resembles a teardrop or ogive shape to reduce the drag and concurrently improve the creep life of the superheater tubes. To administer the practicality of novel tubes, metal Additive Manufacturing, for instance, Laser-Powder Bed Fusion, has been proposed. These unconventional designs were assessed and compared with the baseline circular tube design for mechanical design requirements and the particle and flue gas flow characteristics around the differently shaped tubes. A thermo-mechanical Finite Element Analysis (FEA) was performed for hoop stress calculations. This study also emphasizes on effect of circumferential thermal variation on hoop stress distribution in tubes. Therefore, a detailed 2D thermal simulation has been performed to report the circumferential thermal variation on the tube. A Computational Fluid Dynamics (CFD) analysis coupled with particle tracing was performed for gas flow visualization and particle tracing around the proposed shapes and baseline circular-shaped tube design. The Schlieren Optic setup was built and leveraged for qualitative validation of the proposed design. The complete design methodology established in the paper shows teardrop-shaped tubes better in terms of drag and creep life in contrast to the circular-shaped tube.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.