M. Grabowski, M. Cymborowski, P. Porebski, T. Osinski, I. Shabalin, D. Cooper, W. Minor
{"title":"The Integrated Resource for Reproducibility in Macromolecular Crystallography: Experiences of the first four years","authors":"M. Grabowski, M. Cymborowski, P. Porebski, T. Osinski, I. Shabalin, D. Cooper, W. Minor","doi":"10.1063/1.5128672","DOIUrl":null,"url":null,"abstract":"It has been increasingly recognized that preservation and public accessibility of primary experimental data are cornerstones necessary for the reproducibility of empirical sciences. In the field of molecular crystallography, many journals now recommend that authors of manuscripts presenting a new crystal structure should deposit their primary experimental data (X-ray diffraction images) to one of the dedicated resources created in recent years. Here, we describe our experiences developing the Integrated Resource for Reproducibility in Molecular Crystallography (IRRMC) and describe several examples of a crucial role that diffraction data can play in improving previously determined protein structures. In its first four years, several hundred crystallographers have deposited data from over 5200 diffraction experiments performed at over 60 different synchrotron beamlines or home sources all over the world. In addition to improving the resource and curating submitted data, we have been building a pipeline for extraction or, in some cases, reconstruction of the metadata necessary for seamless automated processing. Preliminary analysis indicates that about 95% of the archived data can be automatically reprocessed. A high rate of reprocessing success shows the feasibility of using the automated metadata extraction and automated processing as a validation step for the deposition of raw diffraction images. The IRRMC is guided by the Findable, Accessible, Interoperable, and Reusable data management principles.","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5128672","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/1.5128672","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 21
Abstract
It has been increasingly recognized that preservation and public accessibility of primary experimental data are cornerstones necessary for the reproducibility of empirical sciences. In the field of molecular crystallography, many journals now recommend that authors of manuscripts presenting a new crystal structure should deposit their primary experimental data (X-ray diffraction images) to one of the dedicated resources created in recent years. Here, we describe our experiences developing the Integrated Resource for Reproducibility in Molecular Crystallography (IRRMC) and describe several examples of a crucial role that diffraction data can play in improving previously determined protein structures. In its first four years, several hundred crystallographers have deposited data from over 5200 diffraction experiments performed at over 60 different synchrotron beamlines or home sources all over the world. In addition to improving the resource and curating submitted data, we have been building a pipeline for extraction or, in some cases, reconstruction of the metadata necessary for seamless automated processing. Preliminary analysis indicates that about 95% of the archived data can be automatically reprocessed. A high rate of reprocessing success shows the feasibility of using the automated metadata extraction and automated processing as a validation step for the deposition of raw diffraction images. The IRRMC is guided by the Findable, Accessible, Interoperable, and Reusable data management principles.
Structural Dynamics-UsCHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍:
Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods.
The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as:
Time-resolved X-ray and electron diffraction and scattering,
Coherent diffractive imaging,
Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.),
Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy,
Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.),
Multidimensional spectroscopies in the infrared, the visible and the ultraviolet,
Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains,
Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals.
These new methods are enabled by new instrumentation, such as:
X-ray free electron lasers, which provide flux, coherence, and time resolution,
New sources of ultrashort electron pulses,
New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources,
New sources of ultrashort infrared and terahertz (THz) radiation,
New detectors for X-rays and electrons,
New sample handling and delivery schemes,
New computational capabilities.