Regularizing ill-posed problem of single-epoch precise GNSS positioning using an iterative procedure

IF 1.2 Q4 REMOTE SENSING Journal of Applied Geodesy Pub Date : 2022-03-19 DOI:10.1515/jag-2021-0031
Artur Fischer, S. Cellmer, K. Nowel
{"title":"Regularizing ill-posed problem of single-epoch precise GNSS positioning using an iterative procedure","authors":"Artur Fischer, S. Cellmer, K. Nowel","doi":"10.1515/jag-2021-0031","DOIUrl":null,"url":null,"abstract":"Abstract This paper analyses the regularization of an ill-conditioned mathematical model in a single-epoch precise GNSS positioning. The regularization parameter (RP) is selected as a parameter that minimizes the criterion of the Mean Squared Error (MSE) function. The crucial for RP estimation is to ensure stable initial least-squares (LS) estimates to replace the unknown quadratic matrix of actual values with the LS covariance matrix. For this purpose, two different data models are proposed, and two research scenarios are formed. Two regularized LS estimations are tested against the non-regularized LS approach. The first one is the classic regularization of LS estimation. In turn, the second one is its iterative counterpart. For the LS estimator of iterative regularization, regularized bias is significantly lower while the overall accuracy is improved in the sense of MSE. The regularized variance-covariance matrix of better precision can mitigate the impact of regularized bias on integer least-squares (ILS) estimation up to some extent. Therefore, iterative LS regularization is well-designed for single-epoch integer ambiguity resolution (AR). Nevertheless, the performance of the ILS estimator is studied in the context of the probability of correct integer AR in the presence of regularized bias.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":"16 1","pages":"247 - 264"},"PeriodicalIF":1.2000,"publicationDate":"2022-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2021-0031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract This paper analyses the regularization of an ill-conditioned mathematical model in a single-epoch precise GNSS positioning. The regularization parameter (RP) is selected as a parameter that minimizes the criterion of the Mean Squared Error (MSE) function. The crucial for RP estimation is to ensure stable initial least-squares (LS) estimates to replace the unknown quadratic matrix of actual values with the LS covariance matrix. For this purpose, two different data models are proposed, and two research scenarios are formed. Two regularized LS estimations are tested against the non-regularized LS approach. The first one is the classic regularization of LS estimation. In turn, the second one is its iterative counterpart. For the LS estimator of iterative regularization, regularized bias is significantly lower while the overall accuracy is improved in the sense of MSE. The regularized variance-covariance matrix of better precision can mitigate the impact of regularized bias on integer least-squares (ILS) estimation up to some extent. Therefore, iterative LS regularization is well-designed for single-epoch integer ambiguity resolution (AR). Nevertheless, the performance of the ILS estimator is studied in the context of the probability of correct integer AR in the presence of regularized bias.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用迭代法正则化单历元精确GNSS定位的病态问题
摘要本文分析了单历元精确GNSS定位中一个病态数学模型的正则化问题。正则化参数(RP)被选择为最小化均方误差(MSE)函数的准则的参数。RP估计的关键是确保稳定的初始最小二乘(LS)估计,以用LS协方差矩阵代替实际值的未知二次矩阵。为此,提出了两种不同的数据模型,并形成了两种研究场景。将两个正则化LS估计与非正则化LS方法进行了比较。第一个是LS估计的经典正则化。反过来,第二个是它的迭代对应物。对于迭代正则化的LS估计器,正则化偏差显著降低,同时在MSE的意义上提高了整体精度。精度较高的正则化方差-协方差矩阵可以在一定程度上减轻正则化偏差对整数最小二乘估计的影响。因此,迭代LS正则化是为单历元整周模糊度解决(AR)而设计的。然而,ILS估计器的性能是在正则化偏差存在的情况下,在正确整数AR的概率的背景下研究的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
期刊最新文献
Spatiotemporal postseismic due to the 2018 Lombok earthquake based on insar revealed multi mechanisms with long duration afterslip Differential synthetic aperture radar (SAR) interferometry for detection land subsidence in Derna City, Libya Improving the approximation quality of tensor product B-spline surfaces by local parameterization Advanced topographic-geodetic surveys and GNSS methodologies in urban planning Detection of GNSS ionospheric scintillations in multiple directions over a low latitude station
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1