Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method

IF 2.4 3区 化学 Q3 CHEMISTRY, ANALYTICAL Methods and Applications in Fluorescence Pub Date : 2022-03-09 DOI:10.1088/2050-6120/ac5bdc
D. Pominova, I. Romanishkin, V. Proydakova, S. Kuznetsov, P. Grachev, A. Ryabova, N. Tabachkova, P. Fedorov, V. Loschenov
{"title":"Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method","authors":"D. Pominova, I. Romanishkin, V. Proydakova, S. Kuznetsov, P. Grachev, A. Ryabova, N. Tabachkova, P. Fedorov, V. Loschenov","doi":"10.1088/2050-6120/ac5bdc","DOIUrl":null,"url":null,"abstract":"Upconversion materials have several advantages for many applications due to their great potential in converting infrared light to visible. For practical use, it is necessary to achieve high intensity of UC luminescence, so the studies of the optimal synthesis parameters for upconversion nanoparticles are still going on. In the present work, we analyzed the synthesis temperature effect on the efficiency and luminescence decay of β-NaGd0.78Yb0.20Er0.02F4 (15–25 nm) upconversion nanoparticles with hexagonal crystal structure synthesized by anhydrous solvothermal technique. The synthesis temperature was varied in the 290 °C–320 °C range. The synthesis temperature was shown to have a significant influence on the upconversion luminescence efficiency and decay time. The coherent scattering domain linearly depended on the synthesis temperature and was in the range 13.1–22.3 nm, while the efficiency of the upconversion luminescence increases exponentially from 0.02 to 0.10% under 1 W cm−2 excitation. For a fundamental analysis of the reasons for the upconversion luminescence intensity dependence on the synthesis temperature, it was proposed to use the maximum entropy method for luminescence decay kinetics processing. This method does not require a preliminary setting of the number of exponents and, due to this, makes it possible to estimate additional components in the luminescence decay kinetics, which are attributed to different populations of rare-earth ions in different conditions. Two components in the green luminescence and one component in the red luminescence decay kinetics were revealed for nanoparticles prepared at 290 °C–300 °C. An intense short and a weak long component in green luminescence decay kinetics could be associated with two different populations of ions in the surface quenching layer and the crystal core volume. With an increase in the synthesis temperature, the second component disappears, and the decay time increases due to an increase in the number of ions in the crystal core volume and a more uniform distribution of dopants.","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Applications in Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1088/2050-6120/ac5bdc","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Upconversion materials have several advantages for many applications due to their great potential in converting infrared light to visible. For practical use, it is necessary to achieve high intensity of UC luminescence, so the studies of the optimal synthesis parameters for upconversion nanoparticles are still going on. In the present work, we analyzed the synthesis temperature effect on the efficiency and luminescence decay of β-NaGd0.78Yb0.20Er0.02F4 (15–25 nm) upconversion nanoparticles with hexagonal crystal structure synthesized by anhydrous solvothermal technique. The synthesis temperature was varied in the 290 °C–320 °C range. The synthesis temperature was shown to have a significant influence on the upconversion luminescence efficiency and decay time. The coherent scattering domain linearly depended on the synthesis temperature and was in the range 13.1–22.3 nm, while the efficiency of the upconversion luminescence increases exponentially from 0.02 to 0.10% under 1 W cm−2 excitation. For a fundamental analysis of the reasons for the upconversion luminescence intensity dependence on the synthesis temperature, it was proposed to use the maximum entropy method for luminescence decay kinetics processing. This method does not require a preliminary setting of the number of exponents and, due to this, makes it possible to estimate additional components in the luminescence decay kinetics, which are attributed to different populations of rare-earth ions in different conditions. Two components in the green luminescence and one component in the red luminescence decay kinetics were revealed for nanoparticles prepared at 290 °C–300 °C. An intense short and a weak long component in green luminescence decay kinetics could be associated with two different populations of ions in the surface quenching layer and the crystal core volume. With an increase in the synthesis temperature, the second component disappears, and the decay time increases due to an increase in the number of ions in the crystal core volume and a more uniform distribution of dopants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用最大熵法研究合成温度对β-NaGdF4: Yb3+、Er3+上转换发光效率和衰减时间的影响
上转换材料由于其在将红外光转换为可见光方面的巨大潜力,在许多应用中具有几个优点。对于实际应用,需要实现高强度的UC发光,因此上转换纳米颗粒的最佳合成参数的研究仍在进行中,我们分析了合成温度对无水溶剂热技术合成的具有六方晶体结构的β-NaGd0.78Yb0.20Er0.02F4(15–25 nm)上转换纳米颗粒的效率和发光衰减的影响。合成温度在290°C–320°C范围内变化。合成温度对上转换发光效率和衰减时间有显著影响。相干散射域线性依赖于合成温度,在13.1–22.3 nm范围内,而在1 W cm−2激发下,上转换发光的效率从0.02%呈指数级增加到0.10%。为了从根本上分析上转换发光强度依赖于合成温度的原因,建议使用最大熵方法进行发光衰减动力学处理。该方法不需要预先设置指数的数量,因此,可以估计发光衰减动力学中的额外成分,这些成分归因于不同条件下不同的稀土离子群体。对于在290°C–300°C下制备的纳米颗粒,揭示了绿色发光中的两种成分和红色发光衰减动力学中的一种成分。绿色发光衰减动力学中的强短分量和弱长分量可能与表面猝灭层和晶核体积中的两种不同的离子群有关。随着合成温度的升高,第二组分消失,并且由于晶核体积中离子数量的增加和掺杂剂的更均匀分布,衰减时间增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods and Applications in Fluorescence
Methods and Applications in Fluorescence CHEMISTRY, ANALYTICALCHEMISTRY, PHYSICAL&n-CHEMISTRY, PHYSICAL
CiteScore
6.20
自引率
3.10%
发文量
60
期刊介绍: Methods and Applications in Fluorescence focuses on new developments in fluorescence spectroscopy, imaging, microscopy, fluorescent probes, labels and (nano)materials. It will feature both methods and advanced (bio)applications and accepts original research articles, reviews and technical notes.
期刊最新文献
Detection of Antimicrobial-Induced Survival/Dead Bacteria via mEos4b Photoconversion: A Preliminary Study. Naphthylated LEGO-lipophosphonoxin antibiotics used as a fluorescent tool for the observation of target membrane perturbations preceding its disruption. CombiningNitellopsis obtusaautofluorescence intensity and F680/F750 ratio to discriminate responses to environmental stressors. Effect of Mn2+doping and DDAB-assisted postpassivation on the structural and optical properties of CsPb(Cl/Br)3halide perovskite nanocrystals. Effect of molecular crowders on ligand binding kinetics with G-quadruplex DNA probed by fluorescence correlation spectroscopy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1