Simone Gramsch, Erik G Bell, A. Moghiseh, Andre Schmeißer
{"title":"Analysis of the package diameter in winding processes by image analysis and a linear regression model","authors":"Simone Gramsch, Erik G Bell, A. Moghiseh, Andre Schmeißer","doi":"10.1177/15589250211073249","DOIUrl":null,"url":null,"abstract":"Currently, industrial winding processes are often optimized by trial and error. A digital twin of winding processes could be helpful in order to assist industry to optimize the winding processes. Formulating the kinematic equations that form the basis of such a simulation of the winding process is straightforward in principle. However, a major challenge is to model the increase of the package diameter as a function of time or length of wound up yarn, respectively. In this paper, a kinematic model for the winding process is first outlined. The focus of the paper is the description of a workflow in order to find a model for the package diameter increase dependent on the wound yarn length. For that purpose, a new image analysis method is presented to derive the general class of the model function for the diameter increase. Then, the measurement results of a series of experiments are analyzed to find a parameterization of the model function. Here, the input process parameters winding tension, cradle pressure, winding speed, and traverse ratio are varied at two levels. Finally, the linear regression model for the package diameter increase is presented.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250211073249","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 2
Abstract
Currently, industrial winding processes are often optimized by trial and error. A digital twin of winding processes could be helpful in order to assist industry to optimize the winding processes. Formulating the kinematic equations that form the basis of such a simulation of the winding process is straightforward in principle. However, a major challenge is to model the increase of the package diameter as a function of time or length of wound up yarn, respectively. In this paper, a kinematic model for the winding process is first outlined. The focus of the paper is the description of a workflow in order to find a model for the package diameter increase dependent on the wound yarn length. For that purpose, a new image analysis method is presented to derive the general class of the model function for the diameter increase. Then, the measurement results of a series of experiments are analyzed to find a parameterization of the model function. Here, the input process parameters winding tension, cradle pressure, winding speed, and traverse ratio are varied at two levels. Finally, the linear regression model for the package diameter increase is presented.
期刊介绍:
Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.