Development and Characterization of Pullulan-Carboxymethyl Cellulose Blend Film for Packaging Applications

IF 3.4 4区 化学 Q2 POLYMER SCIENCE International Journal of Polymer Science Pub Date : 2022-06-16 DOI:10.1155/2022/9649726
Murugesan Thangavelu, Senthil Vadivu Kulandhaivelu
{"title":"Development and Characterization of Pullulan-Carboxymethyl Cellulose Blend Film for Packaging Applications","authors":"Murugesan Thangavelu, Senthil Vadivu Kulandhaivelu","doi":"10.1155/2022/9649726","DOIUrl":null,"url":null,"abstract":"Edible packaging materials have widespread applications in pharmaceutical industries. In this study, the physical, thermal, colour, mechanical, and water barrier properties of a novel edible film based on pullulan (PUL) and carboxymethyl cellulose (CMC) were investigated. The blend films were made by the solution casting method with 3 g of total solid content. The following percentages of 100/0, 75/25, 50/50, 25/75, and 0/100 were used to prepare the films. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) were used to analyze the interaction between PUL and CMC. At the level of 75/25 percentage of PUL, CMC film showed the lowest EAB% (5.55%), the highest values for TS (17.30 MPa), WVP value (\n \n 4.12\n ×\n \n \n 10\n \n \n −\n 10\n \n \n \n  g m-1s-1Pa-1), and water contact angle of 63.43°. By increasing the CMC concentration, blend films became slightly greenish and yellowish but appeared transparent with UV blocking ability. This study reveals that 75/25 (PUL/CMC) blend film has a good potential that can be used in producing edible packaging films to protect the quality of pharmaceutical products with interesting specifications.","PeriodicalId":14283,"journal":{"name":"International Journal of Polymer Science","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2022/9649726","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Edible packaging materials have widespread applications in pharmaceutical industries. In this study, the physical, thermal, colour, mechanical, and water barrier properties of a novel edible film based on pullulan (PUL) and carboxymethyl cellulose (CMC) were investigated. The blend films were made by the solution casting method with 3 g of total solid content. The following percentages of 100/0, 75/25, 50/50, 25/75, and 0/100 were used to prepare the films. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) were used to analyze the interaction between PUL and CMC. At the level of 75/25 percentage of PUL, CMC film showed the lowest EAB% (5.55%), the highest values for TS (17.30 MPa), WVP value ( 4.12 × 10 − 10  g m-1s-1Pa-1), and water contact angle of 63.43°. By increasing the CMC concentration, blend films became slightly greenish and yellowish but appeared transparent with UV blocking ability. This study reveals that 75/25 (PUL/CMC) blend film has a good potential that can be used in producing edible packaging films to protect the quality of pharmaceutical products with interesting specifications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
包装用普鲁兰羧甲基纤维素共混膜的研制与表征
食用包装材料在制药工业中有着广泛的应用。在本研究中,研究了一种基于普鲁兰(PUL)和羧甲基纤维素(CMC)的新型食用膜的物理、热、颜色、机械和防水性能。采用溶液浇铸法,用3 g总固体含量。使用以下百分比100/0、75/25、50/50、25/75和0/100来制备膜。利用傅立叶变换红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜(SEM)和热重分析(TGA)分析了PUL与CMC之间的相互作用。在PUL的75/25%的水平上,CMC膜显示出最低的EAB%(5.55%),TS的最高值(17.30 MPa),WVP值(4.12×10−10 g m-1s-1Pa-1),水接触角为63.43°。随着CMC浓度的增加,共混膜呈微绿色和淡黄色,但呈现透明,具有紫外线阻挡能力。本研究表明,75/25(PUL/CMC)共混膜具有良好的潜力,可用于生产可食用包装膜,以保护具有有趣规格的药品的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: The International Journal of Polymer Science is a peer-reviewed, Open Access journal that publishes original research articles as well as review articles on the chemistry and physics of macromolecules.
期刊最新文献
Characterisation of Luffa cylindrica Fibre from Cameroon for Use in Composites: Effect of Alkaline Treatment An Experimental Study of the Properties of Carbon Fiber/Epoxy Composites Mixed with Rubber Granules Experimental Investigation on the 3D Printing of Nylon Reinforced by Carbon Fiber through Fused Filament Fabrication Process, Effects of Extruder Temperature, and Printing Speed Fracture Resistance of Endodontically Treated Teeth Restored Using Multifiber Posts Compared with Single Fiber Posts Comparison of the Film Properties of Lemon and Sour Cherry Seed Essential Oil-Added Glycerol and/or Sorbitol-Plasticized Corn, Potato, Rice, Tapioca, and Wheat Starch-Based Edible Films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1