S. Dakhli, J.M. Floc’h, M. Aseeri, A. Mersani, H. Rmili
{"title":"Design of Compact and Superdirective Metamaterial-Inspired Two- and Three-Elements Antenna Arrays","authors":"S. Dakhli, J.M. Floc’h, M. Aseeri, A. Mersani, H. Rmili","doi":"10.26866/jees.2023.4.r.179","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a miniature antenna array in a small space in order to achieve superdirectivity for long-range communication. The proposed structures consist of a superdirective metamaterial-inspired array based on a capacitively loaded loop (CLL) driven by an electrically small monopole antenna. This elementary antenna is then used in two- and three-array configurations separated by a fixed interelement distance of 0.1λ to achieve a higher directivity and compact size (with λ the wavelength calculated at the operation frequency 1.850 GHz). The design of the elementary antenna, its simulated radiation performances, as well as those of the parasitic array are also reported. The results of the optimization of two- and three-antenna arrays are discussed. For this study, three corresponding prototypes were fabricated and tested. The measured impedance mismatch and radiation pattern results are presented and shown to be in good agreement with their simulated values. The maximum measured directivity is equal to 5.9 dBi and 4.75 dBi in the case of the two- and three- elements, respectively. The proposed antenna arrays can serve for the realization of point-to-point wireless links and can have a significant impact on compact and high-directive radiofrequency front-ends of a wireless system and for wireless power transfer applications.","PeriodicalId":15662,"journal":{"name":"Journal of electromagnetic engineering and science","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of electromagnetic engineering and science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26866/jees.2023.4.r.179","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the development of a miniature antenna array in a small space in order to achieve superdirectivity for long-range communication. The proposed structures consist of a superdirective metamaterial-inspired array based on a capacitively loaded loop (CLL) driven by an electrically small monopole antenna. This elementary antenna is then used in two- and three-array configurations separated by a fixed interelement distance of 0.1λ to achieve a higher directivity and compact size (with λ the wavelength calculated at the operation frequency 1.850 GHz). The design of the elementary antenna, its simulated radiation performances, as well as those of the parasitic array are also reported. The results of the optimization of two- and three-antenna arrays are discussed. For this study, three corresponding prototypes were fabricated and tested. The measured impedance mismatch and radiation pattern results are presented and shown to be in good agreement with their simulated values. The maximum measured directivity is equal to 5.9 dBi and 4.75 dBi in the case of the two- and three- elements, respectively. The proposed antenna arrays can serve for the realization of point-to-point wireless links and can have a significant impact on compact and high-directive radiofrequency front-ends of a wireless system and for wireless power transfer applications.
期刊介绍:
The Journal of Electromagnetic Engineering and Science (JEES) is an official English-language journal of the Korean Institute of Electromagnetic and Science (KIEES). This journal was launched in 2001 and has been published quarterly since 2003. It is currently registered with the National Research Foundation of Korea and also indexed in Scopus, CrossRef and EBSCO, DOI/Crossref, Google Scholar and Web of Science Core Collection as Emerging Sources Citation Index(ESCI) Journal. The objective of JEES is to publish academic as well as industrial research results and discoveries in electromagnetic engineering and science. The particular scope of the journal includes electromagnetic field theory and its applications: High frequency components, circuits, and systems, Antennas, smart phones, and radars, Electromagnetic wave environments, Relevant industrial developments.