D. Barberena, R. J. Lewis-Swan, A. Rey, J. K. Thompson
{"title":"Ultra narrow linewidth frequency reference via measurement and feedback","authors":"D. Barberena, R. J. Lewis-Swan, A. Rey, J. K. Thompson","doi":"10.5802/crphys.146","DOIUrl":null,"url":null,"abstract":"The generation of very narrow linewidth light sources is of great importance in modern science. One such source is the superradiant laser, which relies on collectively interacting ultra long lived dipoles driven by incoherent light. Here we discuss a different way of generating spectrally pure light by coherently driving such dipoles inside an optical QED cavity. The light exiting the cavity carries information about the detuning between the driving light and the atomic transition, but is also affected by the noise originating from all the decoherence processes that act on the combined atom-cavity system. We calculate these effects to obtain fundamental limits for frequency estimation and stabilization across a range of values of input light intensities and atom-light interaction strengths, estimate these limits in state-of-the-art cavity experiments with alkaline-earth atoms and identify favorable operating conditions. We find that the achievable linewidths are comparable to those of the superradiant laser.","PeriodicalId":50650,"journal":{"name":"Comptes Rendus Physique","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Physique","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5802/crphys.146","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of very narrow linewidth light sources is of great importance in modern science. One such source is the superradiant laser, which relies on collectively interacting ultra long lived dipoles driven by incoherent light. Here we discuss a different way of generating spectrally pure light by coherently driving such dipoles inside an optical QED cavity. The light exiting the cavity carries information about the detuning between the driving light and the atomic transition, but is also affected by the noise originating from all the decoherence processes that act on the combined atom-cavity system. We calculate these effects to obtain fundamental limits for frequency estimation and stabilization across a range of values of input light intensities and atom-light interaction strengths, estimate these limits in state-of-the-art cavity experiments with alkaline-earth atoms and identify favorable operating conditions. We find that the achievable linewidths are comparable to those of the superradiant laser.
期刊介绍:
The Comptes Rendus - Physique are an open acess and peer-reviewed electronic scientific journal publishing original research article. It is one of seven journals published by the Académie des sciences.
Its objective is to enable researchers to quickly share their work with the international scientific community.
The Comptes Rendus - Physique also publish journal articles, thematic issues and articles on the history of the Académie des sciences and its current scientific activity.
From 2020 onwards, the journal''s policy is based on a diamond open access model: no fees are charged to authors to publish or to readers to access articles. Thus, articles are accessible immediately, free of charge and permanently after publication.
The Comptes Rendus - Physique (8 issues per year) cover all fields of physics and astrophysics and propose dossiers. Thanks to this formula, readers of physics and astrophysics will find, in each issue, the presentation of a subject in particularly rapid development. The authors are chosen from among the most active researchers in the field and each file is coordinated by a guest editor, ensuring that the most recent and significant results are taken into account. In order to preserve the historical purpose of the Comptes Rendus, these issues also leave room for the usual notes and clarifications. The articles are written mainly in English.