The importance of incorporating geology, soil, and landscape knowledge in freshwater farm planning in Aotearoa New Zealand

IF 2.1 Q3 SOIL SCIENCE Frontiers in soil science Pub Date : 2022-09-02 DOI:10.3389/fsoil.2022.956692
L. Burkitt, M. Bretherton
{"title":"The importance of incorporating geology, soil, and landscape knowledge in freshwater farm planning in Aotearoa New Zealand","authors":"L. Burkitt, M. Bretherton","doi":"10.3389/fsoil.2022.956692","DOIUrl":null,"url":null,"abstract":"Over half of Aotearoa New Zealand’s (NZ’s) land area is under agriculture or forestry production. Long term monitoring has shown declines in freshwater quality in regions with the most intensive agriculture. The New Zealand government has historically focused on reducing the impact of agriculture on water quality through its Resource Management Act 1991. Lack of improvement in freshwater quality has resulted in the 2020 Essential Freshwater package of reforms which will require all pastoral farms >20 ha in size and all arable farms > 5 ha in size to develop a Freshwater Farm Plan (FFP) by a certified Freshwater Farm Planner. As far as we are aware, New Zealand is the first country in the world to mandate compulsory FFPs. This paper describes the key geological, soil, and landscape factors that need to be considered in an FFP for it to be successful in meeting the 2020 Essential Freshwater objectives. We argue that a greater emphasis should be placed on understanding a farm’s natural resources, as they provide the physical interface between the farming system and both the freshwater and atmospheric ecosystems. Documenting our learning in this area could assist other countries considering Freshwater Farm Planning as a strategy to reduce the impact of agriculture on freshwater quality.","PeriodicalId":73107,"journal":{"name":"Frontiers in soil science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in soil science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fsoil.2022.956692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Over half of Aotearoa New Zealand’s (NZ’s) land area is under agriculture or forestry production. Long term monitoring has shown declines in freshwater quality in regions with the most intensive agriculture. The New Zealand government has historically focused on reducing the impact of agriculture on water quality through its Resource Management Act 1991. Lack of improvement in freshwater quality has resulted in the 2020 Essential Freshwater package of reforms which will require all pastoral farms >20 ha in size and all arable farms > 5 ha in size to develop a Freshwater Farm Plan (FFP) by a certified Freshwater Farm Planner. As far as we are aware, New Zealand is the first country in the world to mandate compulsory FFPs. This paper describes the key geological, soil, and landscape factors that need to be considered in an FFP for it to be successful in meeting the 2020 Essential Freshwater objectives. We argue that a greater emphasis should be placed on understanding a farm’s natural resources, as they provide the physical interface between the farming system and both the freshwater and atmospheric ecosystems. Documenting our learning in this area could assist other countries considering Freshwater Farm Planning as a strategy to reduce the impact of agriculture on freshwater quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将地质、土壤和景观知识纳入新西兰奥特亚淡水养殖场规划的重要性
超过一半的新西兰国土面积在农业或林业生产中。长期监测显示,农业最密集地区的淡水质量有所下降。新西兰政府历来致力于通过1991年《资源管理法》减少农业对水质的影响。淡水质量缺乏改善导致了2020年基本淡水一揽子改革,该改革将要求所有面积大于20公顷的牧场和所有面积大于5公顷的耕地由认证淡水农场规划师制定淡水农场计划(FFP)。据我们所知,新西兰是世界上第一个强制执行FFP的国家。本文描述了FFP成功实现2020年基本淡水目标所需考虑的关键地质、土壤和景观因素。我们认为,应该更加重视了解农场的自然资源,因为它们提供了农业系统与淡水和大气生态系统之间的物理接口。记录我们在这一领域的学习可以帮助其他国家将淡水农场规划视为减少农业对淡水质量影响的战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Groundwater fluoride prediction modeling using physicochemical parameters in Punjab, India: a machine-learning approach Soil ecology, food systems, and organic waste: the critical network nobody is talking about Long-term fertilization and liming increase soil fertility but reduce carbon stratification and stocks of paddy rice soils Effects of local farming practices on soil organic carbon content, enzymatic activities, and microbial community structure in semi-arid soils of Morocco Rice straw incorporation and Azolla application improves agronomic nitrogen-use-efficiency and rice grain yields in paddy fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1