Thermocouple Process Monitoring for Additive Manufacturing

IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Evaluation Pub Date : 2022-04-01 DOI:10.32548/2022.me-04243
S. Kenderian, Tait D. McLouth, Dhruvish Y. Patel, Julian R. Lohser
{"title":"Thermocouple Process Monitoring for Additive Manufacturing","authors":"S. Kenderian, Tait D. McLouth, Dhruvish Y. Patel, Julian R. Lohser","doi":"10.32548/2022.me-04243","DOIUrl":null,"url":null,"abstract":"To understand the thermal history of parts manufactured in a laser powder bed fusion system, eight thermocouple sensors were imbedded at key locations with respect to the parts being built. The design comprised eight vertical cylinders 2.54 cm (1 in.) and 1.27 cm (0.5 in.) in diameter and four 2.54 cm (1 in.) horizontal cylinders. The temperature signature collected at the eight locations reveals the time intervals of depositing and melting each layer and the cooling trend associated with the stoppage required for filter cleaning. The temperature profile also reveals a fast rate of heat accumulation at the start of the process. As more layers are melted and the part becomes taller, the dissipation path for heat deposited by the laser increases prior to reaching the build plate. The heat accumulation, therefore, increases rapidly at first, then decreases, plateaus, and then drops slightly toward the end. Distortions due to residual stresses and resultant part separation from the build plate can be deduced from the thermal signature as detected by the thermocouple sensors. This allows the manufacturer to make adjustments or abort the process if necessary. Otherwise, these distortions that render the part a reject are discovered hours or days later upon completion of the additively manufactured part.","PeriodicalId":49876,"journal":{"name":"Materials Evaluation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32548/2022.me-04243","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

To understand the thermal history of parts manufactured in a laser powder bed fusion system, eight thermocouple sensors were imbedded at key locations with respect to the parts being built. The design comprised eight vertical cylinders 2.54 cm (1 in.) and 1.27 cm (0.5 in.) in diameter and four 2.54 cm (1 in.) horizontal cylinders. The temperature signature collected at the eight locations reveals the time intervals of depositing and melting each layer and the cooling trend associated with the stoppage required for filter cleaning. The temperature profile also reveals a fast rate of heat accumulation at the start of the process. As more layers are melted and the part becomes taller, the dissipation path for heat deposited by the laser increases prior to reaching the build plate. The heat accumulation, therefore, increases rapidly at first, then decreases, plateaus, and then drops slightly toward the end. Distortions due to residual stresses and resultant part separation from the build plate can be deduced from the thermal signature as detected by the thermocouple sensors. This allows the manufacturer to make adjustments or abort the process if necessary. Otherwise, these distortions that render the part a reject are discovered hours or days later upon completion of the additively manufactured part.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造热电偶过程监控
为了了解在激光粉末床熔合系统中制造的部件的热历史,在正在制造的部件的关键位置嵌入了八个热电偶传感器。该设计包括8个直径分别为2.54厘米和1.27厘米的垂直圆柱体和4个直径为2.54厘米的水平圆柱体。在八个地点收集的温度特征揭示了沉积和熔化每层的时间间隔以及与过滤器清洁所需停机相关的冷却趋势。温度分布也揭示了在过程开始时的快速热积累速率。随着更多的层被熔化,部件变得更高,激光沉积的热的耗散路径在到达构建板之前增加。因此,热积累在开始时迅速增加,然后减少,趋于稳定,然后在接近尾声时略有下降。根据热电偶传感器检测到的热特征,可以推断出由于残余应力和由此产生的部件与构建板分离而产生的变形。这允许制造商在必要时进行调整或中止该过程。否则,这些使零件成为废品的变形会在增材制造零件完成后的数小时或数天内被发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Evaluation
Materials Evaluation 工程技术-材料科学:表征与测试
CiteScore
0.90
自引率
16.70%
发文量
35
审稿时长
6-12 weeks
期刊介绍: Materials Evaluation publishes articles, news and features intended to increase the NDT practitioner’s knowledge of the science and technology involved in the field, bringing informative articles to the NDT public while highlighting the ongoing efforts of ASNT to fulfill its mission. M.E. is a peer-reviewed journal, relying on technicians and researchers to help grow and educate its members by providing relevant, cutting-edge and exclusive content containing technical details and discussions. The only periodical of its kind, M.E. is circulated to members and nonmember paid subscribers. The magazine is truly international in scope, with readers in over 90 nations. The journal’s history and archive reaches back to the earliest formative days of the Society.
期刊最新文献
Terahertz Nondestructive Evaluation of Corroding Multilayer Paint Stacks Edge Response and Defect Detectability in Flat Panel Digital Radiography The Evolution of Weld Inspection: Unlocking the Potential of Phased Array Ultrasonic Testing Intelligent Method for Corrosion Detection and Quantification in Aircraft Lap Joints Using Pulsed Eddy Current Multibranch Block-Based Grain Size Classification Of Hybrid Disk Using Ultrasonic Scattering: A Deep Learning Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1