Memristive switching by bulk spin–orbit torque in symmetry-broken ferromagnetic films

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2022-05-09 DOI:10.1063/5.0092115
Ronghuan Xie, Shun Wang, Li Cai, Xiaotiang Cui, Senmiao Liu, Qi Cao, Changwen Zhang, Qikun Huang, Shishen Yan
{"title":"Memristive switching by bulk spin–orbit torque in symmetry-broken ferromagnetic films","authors":"Ronghuan Xie, Shun Wang, Li Cai, Xiaotiang Cui, Senmiao Liu, Qi Cao, Changwen Zhang, Qikun Huang, Shishen Yan","doi":"10.1063/5.0092115","DOIUrl":null,"url":null,"abstract":"Bulk spin–orbit torque (SOT) driven memristive switching is demonstrated in perpendicularly magnetized CoPt alloy films by introducing a composition gradient to break the inversion symmetry in the out-of-plane direction. An analog-like magnetization switching consisting of multiple intermediate states can be robustly formed by applying current pulses with different amplitudes or repetition number. The programmable magnetization manipulation is also presented in a continuous manner to simulate the weight update of biology synapses by means of ramped pulses. Furthermore, controllable switching probability dependent on pulse frequency or repetition number is manifested to emulate the integrate-and-fire function of a biological neuron. With the capability to reproduce both functionalities of synapses and neurons in commonly used CoPt films, it will be a promising candidate to advance the SOT-based neuromorphic hardware.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0092115","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Bulk spin–orbit torque (SOT) driven memristive switching is demonstrated in perpendicularly magnetized CoPt alloy films by introducing a composition gradient to break the inversion symmetry in the out-of-plane direction. An analog-like magnetization switching consisting of multiple intermediate states can be robustly formed by applying current pulses with different amplitudes or repetition number. The programmable magnetization manipulation is also presented in a continuous manner to simulate the weight update of biology synapses by means of ramped pulses. Furthermore, controllable switching probability dependent on pulse frequency or repetition number is manifested to emulate the integrate-and-fire function of a biological neuron. With the capability to reproduce both functionalities of synapses and neurons in commonly used CoPt films, it will be a promising candidate to advance the SOT-based neuromorphic hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对称破缺铁磁薄膜中体自旋轨道转矩的忆阻开关
在垂直磁化的CoPt合金薄膜中,通过引入成分梯度来打破面外方向的反转对称性,证明了体自旋轨道转矩(SOT)驱动记忆电阻开关。通过施加不同振幅或重复次数的电流脉冲,可以形成由多个中间态组成的类似类比的磁化开关。本文还提出了一种连续的可编程磁化操作方法,利用斜坡脉冲模拟生物突触的权值更新。此外,基于脉冲频率或重复次数的可控开关概率模拟了生物神经元的积分-放电功能。由于能够在常用的CoPt薄膜中再现突触和神经元的功能,它将是推进基于sot的神经形态硬件的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Impact of electron velocity modulation on microwave power performance for AlGaN/GaN HFETs Deep learning-driven super-resolution in Raman hyperspectral imaging: Efficient high-resolution reconstruction from low-resolution data TCAD-based investigation of 1/f noise in advanced 22 nm FDSOI MOSFETs Coherence of NV defects in isotopically enriched 6H-28SiC at ambient conditions Molecular beam epitaxy and band structures of type-II antiferromagnetic semiconductor EuTe thin films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1