BaTiO3-based nanogenerators: fundamentals and current status

IF 1.7 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Electroceramics Pub Date : 2021-11-10 DOI:10.1007/s10832-021-00266-3
Satiye Korkmaz, I. Afşin Kariper
{"title":"BaTiO3-based nanogenerators: fundamentals and current status","authors":"Satiye Korkmaz,&nbsp;I. Afşin Kariper","doi":"10.1007/s10832-021-00266-3","DOIUrl":null,"url":null,"abstract":"<div><p>Piezoelectric nanogenerators (PENG) collect energy from the environment and biomechanical movements and convert this mechanical energy into electrical energy. They have become an attractive alternative to traditional rechargeable batteries for providing electrical power low energy portable devices. As PENGs became the center of attention in robots, wearable devices, medical equipment, and many other fields, the development of piezoelectric materials has become mandatory. This review reviews the basic information, structure, properties, and preparation methods of Barium Titanate, one of the most important PENGs, its development in recent years, and the progress towards high energy generation.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"48 1","pages":"8 - 34"},"PeriodicalIF":1.7000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-021-00266-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 7

Abstract

Piezoelectric nanogenerators (PENG) collect energy from the environment and biomechanical movements and convert this mechanical energy into electrical energy. They have become an attractive alternative to traditional rechargeable batteries for providing electrical power low energy portable devices. As PENGs became the center of attention in robots, wearable devices, medical equipment, and many other fields, the development of piezoelectric materials has become mandatory. This review reviews the basic information, structure, properties, and preparation methods of Barium Titanate, one of the most important PENGs, its development in recent years, and the progress towards high energy generation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于batio3的纳米发电机:基本原理和现状
压电纳米发电机(PENG)从环境和生物力学运动中收集能量,并将这种机械能转化为电能。它们已经成为传统可充电电池的一个有吸引力的替代品,为低能量便携式设备提供电力。随着压电材料在机器人、可穿戴设备、医疗设备等许多领域成为关注的焦点,压电材料的发展已成为必然。本文综述了钛酸钡的基本信息、结构、性能、制备方法、近年来的发展以及在高能发电方面的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Electroceramics
Journal of Electroceramics 工程技术-材料科学:硅酸盐
CiteScore
2.80
自引率
5.90%
发文量
22
审稿时长
5.7 months
期刊介绍: While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including: -insulating to metallic and fast ion conductivity -piezo-, ferro-, and pyro-electricity -electro- and nonlinear optical properties -feromagnetism. When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice. The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.
期刊最新文献
Honoring a Legacy – Heartfelt Thanks to Our Former Editor-in-Chief! The effects of MnO2 on the microstructure and electrical properties based on ZnO-Bi2O3-Sb2O3-Cr2O3-Co2O3 varistors Synthesis, microstructure and characterization of Ultra-low permittivity and dielectric loss ZnO-B2O3-SiO2 glass/SiO2 composites for LTCC application Comparative analysis of magnetocaloric effect in La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x = 0 and 0.1) polycrystalline manganites: experimental vs. theoretical determination Investigation of phase structure and electrical properties of PMN-PSN-PNN–PZT ceramics with different PNN content
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1