Recent theory of traveling-wave tubes: a tutorial-review

IF 1.3 Q3 ORTHOPEDICS Plasma Research Express Pub Date : 2020-05-27 DOI:10.1088/2516-1067/ab9730
P. Wong, Peng Zhang, J. Luginsland
{"title":"Recent theory of traveling-wave tubes: a tutorial-review","authors":"P. Wong, Peng Zhang, J. Luginsland","doi":"10.1088/2516-1067/ab9730","DOIUrl":null,"url":null,"abstract":"The traveling-wave tube (TWT), also known as the traveling-wave amplifier (TWA) or traveling-wave tube amplifier (TWTA), is a widely used amplifier in satellite communications and radar. An electromagnetic signal is inputted on one end of the device and is amplified over a distance until it is extracted downstream at the output. The physics behind this spatial amplification of an electromagnetic wave is predicated on the interaction of a linear DC electron beam with the surrounding circuit structure. Pierce, known as the ‘father of communications satellites,’ was the first to formulate the theory for this beam-circuit interaction, the basis of which has since been used to model other vacuum electronic devices such as free-electron lasers, gyrotrons, and Smith-Purcell radiators, just to name a few. In this paper, the traditional Pierce theory will first be briefly reviewed; the classic Pierce theory will then be extended in several directions: harmonic generation and the effect of high beam current on both the beam mode and circuit mode as well as ‘discrete effects’, giving a brief tutorial of recent theories of TWTs.","PeriodicalId":36295,"journal":{"name":"Plasma Research Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/2516-1067/ab9730","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1067/ab9730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 19

Abstract

The traveling-wave tube (TWT), also known as the traveling-wave amplifier (TWA) or traveling-wave tube amplifier (TWTA), is a widely used amplifier in satellite communications and radar. An electromagnetic signal is inputted on one end of the device and is amplified over a distance until it is extracted downstream at the output. The physics behind this spatial amplification of an electromagnetic wave is predicated on the interaction of a linear DC electron beam with the surrounding circuit structure. Pierce, known as the ‘father of communications satellites,’ was the first to formulate the theory for this beam-circuit interaction, the basis of which has since been used to model other vacuum electronic devices such as free-electron lasers, gyrotrons, and Smith-Purcell radiators, just to name a few. In this paper, the traditional Pierce theory will first be briefly reviewed; the classic Pierce theory will then be extended in several directions: harmonic generation and the effect of high beam current on both the beam mode and circuit mode as well as ‘discrete effects’, giving a brief tutorial of recent theories of TWTs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行波管的最新理论:导论回顾
行波管(TWT),也称为行波放大器(TWA)或行波管放大器(TWTA),是卫星通信和雷达中广泛使用的放大器。电磁信号在设备的一端输入,并在一定距离内放大,直到在输出端向下游提取。电磁波的这种空间放大背后的物理学是基于线性直流电子束与周围电路结构的相互作用。皮尔斯被称为“通信卫星之父”,是第一个提出这种束-电路相互作用理论的人,其基础后来被用于模拟其他真空电子设备,如自由电子激光器、回旋管和史密斯-珀塞尔辐射器,仅举几例。本文首先对传统皮尔斯理论进行简要的回顾;然后,经典的皮尔斯理论将在几个方向上扩展:谐波产生、高束流对束模和电路模的影响以及“离散效应”,简要介绍了TWT的最新理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Research Express
Plasma Research Express Energy-Nuclear Energy and Engineering
CiteScore
2.60
自引率
0.00%
发文量
15
期刊最新文献
Study of cylindrical and spherical dust acoustic solitons and quasiperiodic structures in a quantum dusty plasma Activation of water in the downstream of low-pressure ammonia plasma discharge Hydroxyl radical dynamics in a gliding arc discharge using high-speed PLIF imaging 6D phase space collective modes in Vlasov-Maxwell system Two stream instabilities in unmagnetized nonrelativistic quantum plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1