Silurian‐Devonian Lithospheric Thinning and Thermally Softening Along the Northern Margin of the Tarim Craton: Geological Mapping, Petro‐Structural Analysis and Geochronological Constraints

IF 3.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Tectonics Pub Date : 2023-08-19 DOI:10.1029/2023TC007792
Jun Ning, Yingde Jiang, K. Schulmann, Sheng Wang, Pengfei Li, Shuai Shi, H. Qiu
{"title":"Silurian‐Devonian Lithospheric Thinning and Thermally Softening Along the Northern Margin of the Tarim Craton: Geological Mapping, Petro‐Structural Analysis and Geochronological Constraints","authors":"Jun Ning, Yingde Jiang, K. Schulmann, Sheng Wang, Pengfei Li, Shuai Shi, H. Qiu","doi":"10.1029/2023TC007792","DOIUrl":null,"url":null,"abstract":"While the western part of northern Tarim Craton has long been considered as a Paleozoic passive margin, a pronounced Silurian‐Devonian magmatism developed on eastern part of this margin may indicate different but active margin setting. In this contribution, detailed structural mapping, petro‐structural analysis, and geochronological investigations were conducted in the Korla area, eastern part of northern Tarim Craton. Three main generations of fabrics were recognized. The earliest pervasive fabric is an originally sub‐horizontal metamorphic S1 foliation that is in part associated with migmatization characterized by high temperature/low pressure metamorphic mineral assemblages, interpreted as reflecting crustal extension. S1 foliation was affected by D2 contraction forming regional‐scale F2 upright folds associated with sub‐vertical axial planar foliation S2. D3 is marked by development of NW‐SE oriented dextral fault, asymmetric mega‐folding of S2 and spaced NW‐SE‐striking S3 foliation, likely in response to dextral transpression. Geochronological data indicate that D1 extension occurred from ca. 420 to 410 Ma, D2 contraction started around 410 Ma and lasted till 400 Ma or later, and D3 transpression was ongoing around ∼370 Ma. Integrated with regional data, an updated geodynamic model is proposed by interpreting the Central Tianshan, South Tianshan and NE Tarim Craton as an early Paleozoic supra‐subduction system. We suggest that the Silurian‐Devonian event reflects thermal softening and horizontal stretching of the supra‐subduction crust, resulting in drifting of the Central Tianshan continental arc from the proto Tarim Craton in association with opening of the South Tianshan back‐arc basin in‐between.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023TC007792","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

While the western part of northern Tarim Craton has long been considered as a Paleozoic passive margin, a pronounced Silurian‐Devonian magmatism developed on eastern part of this margin may indicate different but active margin setting. In this contribution, detailed structural mapping, petro‐structural analysis, and geochronological investigations were conducted in the Korla area, eastern part of northern Tarim Craton. Three main generations of fabrics were recognized. The earliest pervasive fabric is an originally sub‐horizontal metamorphic S1 foliation that is in part associated with migmatization characterized by high temperature/low pressure metamorphic mineral assemblages, interpreted as reflecting crustal extension. S1 foliation was affected by D2 contraction forming regional‐scale F2 upright folds associated with sub‐vertical axial planar foliation S2. D3 is marked by development of NW‐SE oriented dextral fault, asymmetric mega‐folding of S2 and spaced NW‐SE‐striking S3 foliation, likely in response to dextral transpression. Geochronological data indicate that D1 extension occurred from ca. 420 to 410 Ma, D2 contraction started around 410 Ma and lasted till 400 Ma or later, and D3 transpression was ongoing around ∼370 Ma. Integrated with regional data, an updated geodynamic model is proposed by interpreting the Central Tianshan, South Tianshan and NE Tarim Craton as an early Paleozoic supra‐subduction system. We suggest that the Silurian‐Devonian event reflects thermal softening and horizontal stretching of the supra‐subduction crust, resulting in drifting of the Central Tianshan continental arc from the proto Tarim Craton in association with opening of the South Tianshan back‐arc basin in‐between.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
塔里木克拉通北缘志留系-泥盆纪岩石圈减薄和热软化:地质测绘、岩石结构分析和地质年代约束
尽管塔里木克拉通北部西部长期以来一直被认为是古生代被动边缘,但在该边缘东部发育的明显志留系-泥盆纪岩浆活动可能表明了不同但活跃的边缘环境。在这篇文章中,在塔里木克拉通北部东部的库尔勒地区进行了详细的结构测绘、岩石结构分析和地质年代调查。主要有三代织物获得认可。最早的普遍组构是最初的亚水平变质S1叶理,部分与以高温/低压变质矿物组合为特征的混合岩化有关,被解释为反映地壳伸展。S1叶理受到D2收缩的影响,形成与亚垂直轴向平面叶理S2相关的区域尺度F2直立褶皱。D3的特点是北西向右旋断层的发育、S2的不对称巨型褶皱和间隔的北西向S3叶理,可能是对右旋转压的反应。地质年代数据表明,D1伸展发生在约420至410 Ma,D2收缩开始于410 Ma左右,持续到400 Ma或更晚,D3转压发生在~370 Ma左右。结合区域数据,通过将中天山、南天山和塔里木东北克拉通解释为早古生代超俯冲系统,提出了一个更新的地球动力学模型。我们认为,志留系-泥盆纪事件反映了超俯冲地壳的热软化和水平拉伸,导致中天山陆弧从原塔里木克拉通漂移,并与其间的南天山弧后盆地打开有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tectonics
Tectonics 地学-地球化学与地球物理
CiteScore
7.70
自引率
9.50%
发文量
151
审稿时长
3 months
期刊介绍: Tectonics (TECT) presents original scientific contributions that describe and explain the evolution, structure, and deformation of Earth¹s lithosphere. Contributions are welcome from any relevant area of research, including field, laboratory, petrological, geochemical, geochronological, geophysical, remote-sensing, and modeling studies. Multidisciplinary studies are particularly encouraged. Tectonics welcomes studies across the range of geologic time.
期刊最新文献
Assessment of Diagnostic Accuracy and Clinical Utility of DNA Methylation (5-mC) in Detecting Severity of Occupational Lead Exposure. One Billion Years of Stability in the North American Midcontinent Following Two-Stage Grenvillian Structural Inversion Relating Quartz Crystallographic Preferred Orientation Intensity to Finite Strain Magnitude in the Northern Snake Range Metamorphic Core Complex, Nevada: A New Tool for Characterizing Strain Patterns in Ductilely Sheared Rocks Lancang Fault Assists Block Extrusion in Southeastern Tibet During Early-Middle Miocene Surface Rupture of the 2008 Mw 6.6 Nura Earthquake: Triggered Flexural-Slip Faulting in the Pamir-Tien Shan Collision Zone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1