首页 > 最新文献

Tectonics最新文献

英文 中文
Slip Distribution Along the Chenghai Fault From Airborne LiDAR and Tectonic Implications for the 1515 Yongsheng Earthquake, China 机载激光雷达显示的澄海断层滑动分布及其对中国 1515 年永胜地震的构造影响
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-10 DOI: 10.1029/2024tc008285
Haomin Ji, Zhikun Ren, Xiaoxiao Zhu, Mingkun Bai, Guodong Bao, Jinrui Liu, Guanghao Ha, Zhongtai He
The tectonic deformation of the southeastern margin of the Tibetan Plateau underwent significant changes before and after the Miocene, which led to the change of the deformation characteristics of the Sichuan-Yunnan block, and some local areas in the block also showed structural patterns inconsistent with the macroscopic clockwise rotation deformation. Moreover, the Chenghai fault (CF) in the Sichuan-Yunnan block was the seismogenic fault of the M 73/4 Yongsheng earthquake in 1515. However, the dense vegetation impeded the acquisition of surface deformation characteristics and small-scale horizontal offsets along the fault, resulting in its misty kinematic properties, roughly determined geometric distribution, and the highly controversial rupture parameters of the Yongsheng earthquake. Therefore, we used airborne light detection and ranging, which can penetrate vegetation to obtain high-resolution surface topography, to map the CF within 120 km. Combined with satellite images and field investigations, we determined that the CF consists of a series of secondary faults with simple geometric structures. Continuous offset linear landforms were preserved along the fault. 102 offsets below 30 m were statistically analyzed and the result revealed that the CF has a characteristic displacement of ∼6 m and it may rupture as a united rupture segment in each large earthquake or its two rupture segments cascade rupture to generate large earthquakes. The magnitude of the Yongsheng earthquake in 1515 was estimated at 7.7. Finally, based on this study, the kinematic characteristics of the Dali terrane and Sichuan-Yunnan block, where the CF is located are discussed.
青藏高原东南缘的构造变形在中新世前后发生了重大变化,导致川滇块体的变形特征发生了改变,块体内的局部地区也出现了与宏观顺时针旋转变形不一致的构造形态。此外,川滇地块中的澄海断层(CF)是 1515 年 M 73/4 永胜地震的发震断层。然而,茂密的植被阻碍了对断层沿线地表变形特征和小尺度水平偏移的采集,导致其运动学特性模糊不清,几何分布大致确定,永胜地震的断裂参数也备受争议。因此,我们利用可穿透植被获取高分辨率地表地形的机载光探测和测距技术,绘制了 120 公里范围内的 CF 图。结合卫星图像和实地调查,我们确定 CF 由一系列几何结构简单的次级断层组成。断层沿线保留了连续的偏移线状地貌。我们对 102 个 30 米以下的偏移量进行了统计分析,结果表明,CF 的特征位移为 6 米,在每次大地震中,它可能作为一个联合断裂段发生破裂,或者其两个断裂段级联破裂产生大地震。1515 年永胜地震的震级估计为 7.7 级。最后,在本研究的基础上,讨论了 CF 所在的大理地层和四川-云南块体的运动学特征。
{"title":"Slip Distribution Along the Chenghai Fault From Airborne LiDAR and Tectonic Implications for the 1515 Yongsheng Earthquake, China","authors":"Haomin Ji, Zhikun Ren, Xiaoxiao Zhu, Mingkun Bai, Guodong Bao, Jinrui Liu, Guanghao Ha, Zhongtai He","doi":"10.1029/2024tc008285","DOIUrl":"https://doi.org/10.1029/2024tc008285","url":null,"abstract":"The tectonic deformation of the southeastern margin of the Tibetan Plateau underwent significant changes before and after the Miocene, which led to the change of the deformation characteristics of the Sichuan-Yunnan block, and some local areas in the block also showed structural patterns inconsistent with the macroscopic clockwise rotation deformation. Moreover, the Chenghai fault (CF) in the Sichuan-Yunnan block was the seismogenic fault of the M 7<sup>3</sup>/<sub>4</sub> Yongsheng earthquake in 1515. However, the dense vegetation impeded the acquisition of surface deformation characteristics and small-scale horizontal offsets along the fault, resulting in its misty kinematic properties, roughly determined geometric distribution, and the highly controversial rupture parameters of the Yongsheng earthquake. Therefore, we used airborne light detection and ranging, which can penetrate vegetation to obtain high-resolution surface topography, to map the CF within 120 km. Combined with satellite images and field investigations, we determined that the CF consists of a series of secondary faults with simple geometric structures. Continuous offset linear landforms were preserved along the fault. 102 offsets below 30 m were statistically analyzed and the result revealed that the CF has a characteristic displacement of ∼6 m and it may rupture as a united rupture segment in each large earthquake or its two rupture segments cascade rupture to generate large earthquakes. The magnitude of the Yongsheng earthquake in 1515 was estimated at 7.7. Finally, based on this study, the kinematic characteristics of the Dali terrane and Sichuan-Yunnan block, where the CF is located are discussed.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Block Rotations in NW Iran in Response to the Arabia-Eurasia Collision Constrained by Paleomagnetism 古地磁学制约的伊朗西北部地块旋转与阿拉伯-欧亚大陆碰撞的关系
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-07 DOI: 10.1029/2023tc008139
Ali Niknam, Annique van der Boon, Mahnaz Rezaeian, Nuretdin Kaymakcı, Cor Langereis
Northwest Iran is a seismically active region dominated by NW-SE trending strike-slip faults, such as the North Tabriz and Qosha Dagh faults, and smaller NNE-SSW striking faults. The Bozgush Mountains are shaped by these faults and divided into two domains that show a difference in strike. To quantify rotational tectonic deformation in NW Iran, we performed a paleomagnetic study along three transects of the Bozgush and Qosha Dagh Mountains with 127 sites. Our large new paleomagnetic data set shows that the Bozgush Mountains did not rotate as a single rigid block. In the western domain of the Bozgush Mountains, we find evidence for clockwise vertical axis rotations of ∼40°, while the eastern domain has rotated up to ∼80° clockwise. Declinations of the western Bozgush domain fit well with observed declinations in the Qosha Dagh Mountains. Fault patterns show that the eastern domain of the Bozgush Mountains is divided by a set of NNE-SSW striking sinistral strike-slip faults, which created domino-style blocks that accommodated the additional 40° of rotation. We estimate that these extra rotations have resulted in around 4 km of N-S shortening and more than 1.5 km of differential uplift.
伊朗西北部是地震活跃地区,主要是西北-东南走向的走向滑动断层,如北大不里士断层和 Qosha Dagh 断层,以及较小的东北-西南走向断层。博兹古什山脉就是由这些断层形成的,并被分为两个走向不同的区域。为了量化伊朗西北部的旋转构造变形,我们沿着博兹古什山脉和科沙达赫山脉的三个横断面,对 127 个地点进行了古地磁研究。我们新的大型古地磁数据集显示,博兹古什山脉并不是作为一个单一的刚性块体旋转的。在博兹古什山脉的西部地区,我们发现了垂直轴顺时针旋转 ∼ 40° 的证据,而东部地区顺时针旋转达 ∼ 80°。博兹古什西部岩域的递减与在科沙达赫山脉观测到的递减非常吻合。断层形态显示,博兹古什山脉东段被一组 NNE-SSW 走向的正弦走向滑动断层所分割,这些断层形成的多米诺式地块可容纳 40° 的额外旋转。我们估计,这些额外的旋转造成了约 4 公里的 N-S 向缩短和超过 1.5 公里的差异隆起。
{"title":"Block Rotations in NW Iran in Response to the Arabia-Eurasia Collision Constrained by Paleomagnetism","authors":"Ali Niknam, Annique van der Boon, Mahnaz Rezaeian, Nuretdin Kaymakcı, Cor Langereis","doi":"10.1029/2023tc008139","DOIUrl":"https://doi.org/10.1029/2023tc008139","url":null,"abstract":"Northwest Iran is a seismically active region dominated by NW-SE trending strike-slip faults, such as the North Tabriz and Qosha Dagh faults, and smaller NNE-SSW striking faults. The Bozgush Mountains are shaped by these faults and divided into two domains that show a difference in strike. To quantify rotational tectonic deformation in NW Iran, we performed a paleomagnetic study along three transects of the Bozgush and Qosha Dagh Mountains with 127 sites. Our large new paleomagnetic data set shows that the Bozgush Mountains did not rotate as a single rigid block. In the western domain of the Bozgush Mountains, we find evidence for clockwise vertical axis rotations of ∼40°, while the eastern domain has rotated up to ∼80° clockwise. Declinations of the western Bozgush domain fit well with observed declinations in the Qosha Dagh Mountains. Fault patterns show that the eastern domain of the Bozgush Mountains is divided by a set of NNE-SSW striking sinistral strike-slip faults, which created domino-style blocks that accommodated the additional 40° of rotation. We estimate that these extra rotations have resulted in around 4 km of N-S shortening and more than 1.5 km of differential uplift.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kinematics Along the Qingchuan Fault and Deformation Pattern in the Eastern Tibetan Plateau 青藏高原东部青川断层运动学与变形模式
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-06 DOI: 10.1029/2023tc008075
Haoyue Sun, Honglin He, Yasutaka Ikeda, Ken'ichi Kano, Wei Gao, Wen Sun, Feng Shi, Peng Su, Tomoo Echigo, Shinsuke Okada, Yoshiki Shirahama
The accommodation of the substantial eastward crustal motion of the Bayan Har block characterizes the dynamics of faults located at the eastern Tibetan Plateau. However, uncertainties persist concerning the manner and amount of deformation distributed on these faults, with slip senses and rates constituting critical factors. In the northeastern segment of the Longmenshan thrust zone, the contentious activity and the unknown geologic slip rate present challenges. This study, focusing on the Qingchuan fault, the predominant fault within the northeastern Longmenshan, employed satellite imagery interpretation, displaced fluvial terraces surveying, displacement measurements, and chronological analysis to comprehensively characterize its fault activity. Our investigation robustly demonstrates the Qingchuan fault has been active since the late Quaternary, and is primarily marked with a pronounced dextral slip at a rate of 0.6–1.0 mm/year. By quantitatively assessing the deformation rates of the faults at the eastern Tibetan Plateau, we propose that they sufficiently accommodate the entire eastward crustal movement of the Bayan Har block; thereby no additional deformation propagates beyond the Qingchuan fault. Furthermore, we introduce a subblock model to elucidate the regional crustal deformation pattern, wherein the eastward movement of the Bayan Har block transfers to the northeastward movement of the Bikou subblock. This movement results in reverse slip patterns for the Minjiang and Huya faults, while the Beichuan and Qingchuan faults predominantly experience dextral displacements. The complex strain partitioning within the northern Longmenshan range underscores the observed variations in slip patterns across different segments of the Longmenshan thrust zone, advancing our understanding of fault behavior and the orchestration of crustal deformation in this intricate tectonic framework.
巴颜喀拉地块地壳大幅向东运动的适应性是青藏高原东部断层动态的特征。然而,这些断层的变形方式和变形量仍存在不确定性,其中滑动感应和速率是关键因素。在龙门山推力带东北段,有争议的活动和未知的地质滑动速率带来了挑战。本研究以龙门山东北段的主要断层--青川断层为研究对象,通过卫星图像判读、位移阶地测量、位移测量和年代分析等方法,对其断层活动特征进行了综合分析。我们的研究有力地证明了青川断层自第四纪晚期开始活动,主要表现为明显的右旋滑动,速率为 0.6-1.0 毫米/年。通过定量评估青藏高原东部断层的变形速率,我们认为这些断层足以容纳巴颜哈拉地块的全部地壳东移,因此没有额外的变形传播到青川断层之外。此外,我们还引入了一个子块模型来阐明区域地壳变形模式,即巴颜哈尔块体的东移转移到碧口子块体的东北移。这种运动导致岷江和虎牙断层出现反向滑动模式,而北川和青川断层则主要出现右旋位移。龙门山山脉北部复杂的应变分区凸显了所观测到的龙门山推覆带不同地段的滑动模式的变化,加深了我们对这一错综复杂的构造框架中断层行为和地壳变形协调的理解。
{"title":"Kinematics Along the Qingchuan Fault and Deformation Pattern in the Eastern Tibetan Plateau","authors":"Haoyue Sun, Honglin He, Yasutaka Ikeda, Ken'ichi Kano, Wei Gao, Wen Sun, Feng Shi, Peng Su, Tomoo Echigo, Shinsuke Okada, Yoshiki Shirahama","doi":"10.1029/2023tc008075","DOIUrl":"https://doi.org/10.1029/2023tc008075","url":null,"abstract":"The accommodation of the substantial eastward crustal motion of the Bayan Har block characterizes the dynamics of faults located at the eastern Tibetan Plateau. However, uncertainties persist concerning the manner and amount of deformation distributed on these faults, with slip senses and rates constituting critical factors. In the northeastern segment of the Longmenshan thrust zone, the contentious activity and the unknown geologic slip rate present challenges. This study, focusing on the Qingchuan fault, the predominant fault within the northeastern Longmenshan, employed satellite imagery interpretation, displaced fluvial terraces surveying, displacement measurements, and chronological analysis to comprehensively characterize its fault activity. Our investigation robustly demonstrates the Qingchuan fault has been active since the late Quaternary, and is primarily marked with a pronounced dextral slip at a rate of 0.6–1.0 mm/year. By quantitatively assessing the deformation rates of the faults at the eastern Tibetan Plateau, we propose that they sufficiently accommodate the entire eastward crustal movement of the Bayan Har block; thereby no additional deformation propagates beyond the Qingchuan fault. Furthermore, we introduce a subblock model to elucidate the regional crustal deformation pattern, wherein the eastward movement of the Bayan Har block transfers to the northeastward movement of the Bikou subblock. This movement results in reverse slip patterns for the Minjiang and Huya faults, while the Beichuan and Qingchuan faults predominantly experience dextral displacements. The complex strain partitioning within the northern Longmenshan range underscores the observed variations in slip patterns across different segments of the Longmenshan thrust zone, advancing our understanding of fault behavior and the orchestration of crustal deformation in this intricate tectonic framework.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Bend on the Haiyuan Strike-Slip Fault Leads to Segmented Activity of the Minle-Damaying Thrust Fault in the Qilian Shan, the Northeastern Tibetan Plateau 海原走向滑动断层弯曲导致青藏高原东北部祁连山民乐-大麦营推断断层分段活动
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-04 DOI: 10.1029/2023tc008239
Qingri Liu, Jianguo Xiong, Peizhen Zhang, Wei Tao, Luyuan Huang, Xuhang Yang, Yihui Zhang, Feipeng Huang, Xiuli Zhang, Huiping Zhang, Chuanyou Li, Youli Li
The present tectonic regime of the Qilian Shan is dominated by large northeast and northwest striking strike-slip faults and northwest striking thrust faults. Deformation distribution between the subparallel Haiyuan Strike-slip Fault and the Minle-Damaying Thrust Fault (MDF) is crucial for understanding the orogenic mechanism of the northeastern Tibetan Plateau. However, the uncertain kinematics of the MDF and the stress variation along the strike-varying Haiyuan Fault inhibit further discussion of their relationship. Five key sites along the MDF were selected for analysis of terrace abandonment ages and vertical offsets to determine the slip rates. Two finite element models were constructed to calculate the stress-strain relationship between the Haiyuan Fault and MDF. We find that the activity of the MDF can be divided into two segments by a stepover with less activity and lower terrain at the Xida River site. Shortening rates of the MDF vary between 0.2 and 2.4 mm/a since the late Pleistocene with trapezoidal trends on both fault segments. The two finite element models and GPS data reveal that the strain rates are lower at the Xida River site but higher at the Menyuan Bend on the Haiyuan Fault. We infer that long-term strain accumulation at the Menyuan Bend may have mitigated the tectonic activity northeast to the bend under the northeastward stress field, including the activity of the MDF at the Xida River site, and resulted in the segmentation of the MDF.
祁连山目前的构造体系主要由东北、西北走向的大型走向滑动断层和西北走向的推断断层构成。近平行的海源走向滑动断层与民乐-大麦营推断断层之间的变形分布对于理解青藏高原东北部的造山机制至关重要。然而,MDF运动学上的不确定性和海源断层沿走向的应力变化阻碍了对两者关系的进一步讨论。研究人员选取了海源断裂带上的五个关键点,分析了阶地的废弃年龄和垂直偏移,以确定滑动速率。建立了两个有限元模型来计算海源断裂和 MDF 之间的应力应变关系。我们发现,在西大河地段,MDF 的活动可以通过一个活动较少且地势较低的台阶分为两段。自晚更新世以来,MDF 的缩短率在 0.2 至 2.4 mm/a 之间,两段断层均呈梯形趋势。两个有限元模型和 GPS 数据显示,西大河地段的应变率较低,而海原断裂门源弯处的应变率较高。我们推断,在东北应力场作用下,门源拐弯处的长期应变积累可能减缓了拐弯东北方向的构造活动,包括西大河地段 MDF 的活动,并导致了 MDF 的分段。
{"title":"The Bend on the Haiyuan Strike-Slip Fault Leads to Segmented Activity of the Minle-Damaying Thrust Fault in the Qilian Shan, the Northeastern Tibetan Plateau","authors":"Qingri Liu, Jianguo Xiong, Peizhen Zhang, Wei Tao, Luyuan Huang, Xuhang Yang, Yihui Zhang, Feipeng Huang, Xiuli Zhang, Huiping Zhang, Chuanyou Li, Youli Li","doi":"10.1029/2023tc008239","DOIUrl":"https://doi.org/10.1029/2023tc008239","url":null,"abstract":"The present tectonic regime of the Qilian Shan is dominated by large northeast and northwest striking strike-slip faults and northwest striking thrust faults. Deformation distribution between the subparallel Haiyuan Strike-slip Fault and the Minle-Damaying Thrust Fault (MDF) is crucial for understanding the orogenic mechanism of the northeastern Tibetan Plateau. However, the uncertain kinematics of the MDF and the stress variation along the strike-varying Haiyuan Fault inhibit further discussion of their relationship. Five key sites along the MDF were selected for analysis of terrace abandonment ages and vertical offsets to determine the slip rates. Two finite element models were constructed to calculate the stress-strain relationship between the Haiyuan Fault and MDF. We find that the activity of the MDF can be divided into two segments by a stepover with less activity and lower terrain at the Xida River site. Shortening rates of the MDF vary between 0.2 and 2.4 mm/a since the late Pleistocene with trapezoidal trends on both fault segments. The two finite element models and GPS data reveal that the strain rates are lower at the Xida River site but higher at the Menyuan Bend on the Haiyuan Fault. We infer that long-term strain accumulation at the Menyuan Bend may have mitigated the tectonic activity northeast to the bend under the northeastward stress field, including the activity of the MDF at the Xida River site, and resulted in the segmentation of the MDF.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141933223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cenozoic Pulsed Rise and Growth of the Chinese South Tianshan Revealed by Zircon and Apatite Provenance Analyses: Implications for Stepwise Aridification in the Tarim Basin 锆石和磷灰石产状分析揭示的中国南天山新生代脉冲式上升和增长:塔里木盆地逐步干旱化的影响
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-02 DOI: 10.1029/2023tc008211
Dunfeng Xiang, Zhiyong Zhang, David Chew, Marc Jolivet, Marco G. Malusà, Thomas Zack, Lin Wu, Chao Guo, Nan Wang, Wenjiao Xiao
Cenozoic uplift in the Tianshan played an important role in driving Proto-Paratethys Sea retreat and Asian aridification. However, most paleoclimate studies have focused on the Pamir-Tianshan corridor, and frequently overlook the role of the entire Tianshan range in modifying the Central Asian climate during Cenozoic uplift. When and how Cenozoic deformation of Tianshan was initiated and propagated are intensively debated which makes its role in contributing to climate change in Central Asia more ambiguous. To address this issue, this study presents new detrital zircon U-Pb and detrital apatite U-Pb and fission track age data from Cenozoic sedimentary successions (54–0 Ma) in the northern margin of the Tarim Basin and integrates these data with published provenance data from adjacent regions. Our results show that deformation/uplift of the Baicheng-Kuqa Depression and the South Tianshan occurred at ∼41–37 Ma and ∼24 Ma, when topographic growth of South Tianshan began to block the flow of sediment from the north. Continued uplift of the South Tianshan completely blocked fluvial transport from the Central Tianshan-Yili Block by ∼10 Ma, as shown by the paucity of 380–310 Ma detrital zircons/apatites. Far-field, north-directed compressive stress resulting from the India-Asia collision began to propagate toward the South Tianshan and its foreland during the Late Eocene, and continued to propagate into the South Tianshan and northward at the ∼24 Ma and 10 Ma. Finally, we suggest a two-stage of aridification in the Tarim Basin which can be linked to two stages (∼24 and 10 Ma) of growth of the Tianshan.
新生代天山隆升在推动原帕拉铁西海退缩和亚洲干旱化方面发挥了重要作用。然而,大多数古气候研究都集中在帕米尔-天山走廊,往往忽视了整个天山山脉在新生代隆升过程中对中亚气候的改变作用。人们对天山新生代变形何时开始、如何发生以及如何传播还存在激烈的争论,这使得天山在中亚气候变化中的作用更加模糊。为解决这一问题,本研究提供了塔里木盆地北缘新生代沉积岩系(54-0Ma)新的非铁质锆石U-Pb和非铁质磷灰石U-Pb及裂变轨迹年龄数据,并将这些数据与邻近地区已公布的产状数据进行了整合。我们的研究结果表明,白城-库车凹陷和南天山的变形/隆起发生在41-37 Ma和24 Ma,当时南天山的地形增长开始阻挡来自北方的沉积物流。南天山的持续隆升在∼10 Ma时完全阻断了来自中天山-伊犁地块的河流搬运,这一点从380-310 Ma铁锆石/磷灰石的稀少程度可以看出。印度-亚洲碰撞产生的远场北向压应力在晚始新世开始向南天山及其前陆传播,并在∼24 Ma和∼10 Ma继续向南天山和北向传播。最后,我们提出了塔里木盆地干旱化的两个阶段,这可以与天山的两个生长阶段(24 ∼ 10 Ma)联系起来。
{"title":"Cenozoic Pulsed Rise and Growth of the Chinese South Tianshan Revealed by Zircon and Apatite Provenance Analyses: Implications for Stepwise Aridification in the Tarim Basin","authors":"Dunfeng Xiang, Zhiyong Zhang, David Chew, Marc Jolivet, Marco G. Malusà, Thomas Zack, Lin Wu, Chao Guo, Nan Wang, Wenjiao Xiao","doi":"10.1029/2023tc008211","DOIUrl":"https://doi.org/10.1029/2023tc008211","url":null,"abstract":"Cenozoic uplift in the Tianshan played an important role in driving Proto-Paratethys Sea retreat and Asian aridification. However, most paleoclimate studies have focused on the Pamir-Tianshan corridor, and frequently overlook the role of the entire Tianshan range in modifying the Central Asian climate during Cenozoic uplift. When and how Cenozoic deformation of Tianshan was initiated and propagated are intensively debated which makes its role in contributing to climate change in Central Asia more ambiguous. To address this issue, this study presents new detrital zircon U-Pb and detrital apatite U-Pb and fission track age data from Cenozoic sedimentary successions (54–0 Ma) in the northern margin of the Tarim Basin and integrates these data with published provenance data from adjacent regions. Our results show that deformation/uplift of the Baicheng-Kuqa Depression and the South Tianshan occurred at ∼41–37 Ma and ∼24 Ma, when topographic growth of South Tianshan began to block the flow of sediment from the north. Continued uplift of the South Tianshan completely blocked fluvial transport from the Central Tianshan-Yili Block by ∼10 Ma, as shown by the paucity of 380–310 Ma detrital zircons/apatites. Far-field, north-directed compressive stress resulting from the India-Asia collision began to propagate toward the South Tianshan and its foreland during the Late Eocene, and continued to propagate into the South Tianshan and northward at the ∼24 Ma and 10 Ma. Finally, we suggest a two-stage of aridification in the Tarim Basin which can be linked to two stages (∼24 and 10 Ma) of growth of the Tianshan.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Lower Crustal Rheology on Surface Deformation During Oblique Extension: Insights From Sandbox Modeling 下地壳流变对斜向延伸过程中地表变形的作用:沙箱建模的启示
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-02 DOI: 10.1029/2024tc008365
Yuqiong Mao, Yiquan Li, Dong Jia, Xianyan Wang, Yingying Chen, Qin Li, Rui Li
Extensive researches have been conducted on the relationship between surface deformation and the properties of upper crust. However, the link between surface deformation and lower crustal rheology, especially in a three-dimensional context, remains unclear. In this study, we utilize sandbox modeling to investigate the impact of lower crustal rheology on surface deformation during oblique extension. Under the same conditions, six models with different lower crustal viscosities, both with and without syn-kinematic deposits, are conducted. The results indicate that a decrease in lower crustal viscosity may contribute to an increase in: (a) graben width, (b) graben length, (c) graben spacing, (d) the number of isolated rifts and (e) topographic relief of oblique extensional systems, while also leading to a reduction in the total number of grabens. Notably, there exists a negative linear correlation between graben spacing and lower crustal viscosity. In map view, the angle between fault strike and the direction of pre-existing discontinuities increases as the viscosity of the lower crust decreases. Furthermore, the frequency of large rakes (>50°) decreases with decreasing lower crustal viscosity. These findings align with natural examples such as the East African Rift System, Weihe Graben and the South Tibetan Rift in terms of geomorphology, tectonics, and crustal rheology. Through a comprehensive comparison of the graben width, spacing, and the angle between fault strike and the direction of pre-existing discontinuities, our study provides valuable insights into the rheology of the lower crust in natural settings.
人们对地表变形与上地壳性质之间的关系进行了广泛的研究。然而,地表变形与下地壳流变之间的联系,尤其是三维背景下的联系,仍不清楚。在本研究中,我们利用沙箱模型研究了斜向延伸过程中下地壳流变对地表变形的影响。在相同的条件下,我们建立了六个不同下地壳粘度的模型,包括有和没有同步动力沉积的模型。结果表明,地壳下部粘度的降低可能会导致以下方面的增加:(a) 地堑宽度、(b) 地堑长度、(c) 地堑间距、(d) 孤立裂谷的数量和 (e) 斜伸系统的地形起伏,同时也会导致地堑总数的减少。值得注意的是,地堑间距与较低的地壳粘度之间存在负线性关系。从地图上看,随着下地壳粘度的降低,断层走向与原有不连续面方向之间的夹角也在增大。此外,随着下地壳粘度的降低,大耙齿(>50°)的频率也会降低。这些发现在地貌学、构造学和地壳流变学方面与东非大裂谷系统、渭河地堑和藏南断裂等自然实例相吻合。通过对地堑宽度、间距以及断层走向与原有不连续面方向之间角度的综合比较,我们的研究为了解自然环境下的下地壳流变学提供了宝贵的见解。
{"title":"The Role of Lower Crustal Rheology on Surface Deformation During Oblique Extension: Insights From Sandbox Modeling","authors":"Yuqiong Mao, Yiquan Li, Dong Jia, Xianyan Wang, Yingying Chen, Qin Li, Rui Li","doi":"10.1029/2024tc008365","DOIUrl":"https://doi.org/10.1029/2024tc008365","url":null,"abstract":"Extensive researches have been conducted on the relationship between surface deformation and the properties of upper crust. However, the link between surface deformation and lower crustal rheology, especially in a three-dimensional context, remains unclear. In this study, we utilize sandbox modeling to investigate the impact of lower crustal rheology on surface deformation during oblique extension. Under the same conditions, six models with different lower crustal viscosities, both with and without syn-kinematic deposits, are conducted. The results indicate that a decrease in lower crustal viscosity may contribute to an increase in: (a) graben width, (b) graben length, (c) graben spacing, (d) the number of isolated rifts and (e) topographic relief of oblique extensional systems, while also leading to a reduction in the total number of grabens. Notably, there exists a negative linear correlation between graben spacing and lower crustal viscosity. In map view, the angle between fault strike and the direction of pre-existing discontinuities increases as the viscosity of the lower crust decreases. Furthermore, the frequency of large rakes (&gt;50°) decreases with decreasing lower crustal viscosity. These findings align with natural examples such as the East African Rift System, Weihe Graben and the South Tibetan Rift in terms of geomorphology, tectonics, and crustal rheology. Through a comprehensive comparison of the graben width, spacing, and the angle between fault strike and the direction of pre-existing discontinuities, our study provides valuable insights into the rheology of the lower crust in natural settings.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transient Aseismic Vertical Deformation Across the Steeply-Dipping Pisia-Skinos Normal Fault (Gulf of Corinth, Greece) 穿越陡倾皮西亚-斯基诺斯正断层的瞬态地震垂直变形(希腊科林斯湾)
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-02 DOI: 10.1029/2024tc008276
Zoë K. Mildon, Manuel Diercks, Gerald P. Roberts, Joanna P. Faure Walker, Athanassios Ganas, Ioannis Papanikolaou, Vassilis Sakas, Jenni Robertson, Claudia Sgambato, Sam Mitchell
Geodetically-derived deformation rates are sometimes used to infer seismic hazard, implicitly assuming that short-term (annual-decadal) deformation is representative of longer-term deformation. This is despite geological observations indicating that deformation/slip rates are variable over a range of timescales. Using geodetic data from 2016 to 2021, we observe an up to 7-fold increase in vertical deformation rate in mid-2019 across the Pisia-Skinos normal fault in Greece. We hypothesize that this deformation is aseismic as there is no temporally correlated increase in the earthquake activity (M > 1). We explore four possible physical mechanisms, and our preferred hypothesis is that the transient deformation is caused by centimeter-scale slip in the upper 5 km of the Pisia fault zone. This is the first observation of shallow tectonic (i.e., not related to human activities) aseismic deformation on a normal fault globally. Our results suggest that continental normal faults can exhibit variable deformation over shorter timescales than previously observed, and thus care should be taken when utilizing geodetic rates to quantify seismic hazard.
从地质学角度得出的形变率有时被用来推断地震危险性,隐含地假定短期(年-十年)形变代表长期形变。尽管地质观测结果表明,形变/滑动率在一系列时间尺度上都是可变的。利用 2016 年至 2021 年的大地测量数据,我们观测到 2019 年中期希腊皮西亚-斯基诺斯正断层的垂直变形率增加了 7 倍。我们假设这种变形是非地震性的,因为地震活动(M >1)并没有在时间上相关增加。我们探讨了四种可能的物理机制,首选的假设是,瞬态形变是由皮西亚断层带上段 5 公里处厘米级的滑动引起的。这是首次在全球范围内观测到正断层的浅构造(即与人类活动无关)地震变形。我们的研究结果表明,大陆正断层在更短的时间尺度上会出现比以前观测到的更多的变形,因此在利用大地测量速率来量化地震危害时应小心谨慎。
{"title":"Transient Aseismic Vertical Deformation Across the Steeply-Dipping Pisia-Skinos Normal Fault (Gulf of Corinth, Greece)","authors":"Zoë K. Mildon, Manuel Diercks, Gerald P. Roberts, Joanna P. Faure Walker, Athanassios Ganas, Ioannis Papanikolaou, Vassilis Sakas, Jenni Robertson, Claudia Sgambato, Sam Mitchell","doi":"10.1029/2024tc008276","DOIUrl":"https://doi.org/10.1029/2024tc008276","url":null,"abstract":"Geodetically-derived deformation rates are sometimes used to infer seismic hazard, implicitly assuming that short-term (annual-decadal) deformation is representative of longer-term deformation. This is despite geological observations indicating that deformation/slip rates are variable over a range of timescales. Using geodetic data from 2016 to 2021, we observe an up to 7-fold increase in vertical deformation rate in mid-2019 across the Pisia-Skinos normal fault in Greece. We hypothesize that this deformation is aseismic as there is no temporally correlated increase in the earthquake activity (M &gt; 1). We explore four possible physical mechanisms, and our preferred hypothesis is that the transient deformation is caused by centimeter-scale slip in the upper 5 km of the Pisia fault zone. This is the first observation of shallow tectonic (i.e., not related to human activities) aseismic deformation on a normal fault globally. Our results suggest that continental normal faults can exhibit variable deformation over shorter timescales than previously observed, and thus care should be taken when utilizing geodetic rates to quantify seismic hazard.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884575","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magmatism and Polyphase Deformation in the Middle Jurassic Arc of Central Chile: Implications for the Tectonic Development of the Early Andean Margin 智利中部中侏罗世弧的岩浆活动和多相变形:早期安第斯边缘构造发展的影响
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-31 DOI: 10.1029/2023tc008241
John S. Singleton, Gloria Arancibia, Diego Morata, Ignacia Pérez De La Maza
The ∼173–164 Ma Papudo-Quintero plutonic complex near 32.5°S in central Chile records three deformation events that provide insight into the tectonic development of the early Andean margin. The first event (D1) includes: (a) high-temperature (>600°C), coaxial-dominated strain along NE- to N-striking subvertical shear zones; (b) widespread emplacement of granitic dikes that dip gently to steeply NE; and (c) development of narrow (<10 cm thick) strike-slip and oblique-reverse shear zones. These D1 structures record NW-SE to WNW-ESE transpressional shortening with a component of sinistral shear parallel to the N-S trending magmatic arc. Zircon and apatite U-Pb dates and cross-cutting relations constrain most D1 deformation to ∼166–164 Ma. The second event (D2) occurred during postmagmatic cooling in the Late Jurassic and was characterized by development of pervasive E-W-striking veins with alteration halos and minor strike-slip and normal faults that record N-S extension in a transtensional regime. Structures associated with the last deformation event (D3) include Late Jurassic to Early Cretaceous mafic dikes, veins, and conjugate strike-slip faults that record NW-SE to N-S shortening in a strike-slip regime. D1 deformation is consistent with studies from other areas that document NW-SE shortening ± sinistral transpression along the arc throughout the Jurassic, suggesting this deformation was regional in scale and driven by oblique subduction convergence. Deformation associated with oblique convergence was localized within the active magmatic arc, which was an important process in the early Andean orogeny. As the arc migrated eastward, D2 and D3 structures formed in a low-stress regime in an arc margin or forearc setting.
智利中部南纬 32.5°附近的 ∼ 173-164 Ma 帕普多-金特罗(Papudo-Quintero)岩浆岩复合体记录了三个变形事件,有助于深入了解早期安第斯边缘的构造发展。第一个事件(D1)包括(a) 高温(>600°C)、同轴为主的应变,沿东北向至北向冲击的俯冲剪切带;(b) 花岗岩长脉的广泛喷出,向东北方向平缓至陡峭地倾斜;(c) 形成狭窄(<10 厘米厚)的走向滑动和斜向反向剪切带。这些 D1 构造记录了 NW-SE 到 WNW-ESE 的换位缩短,其中有一部分正弦剪切与 N-S 向岩浆弧平行。锆石和磷灰石的 U-Pb 年代和横切关系将大部分 D1 变形推定为 166-164 Ma。第二次变形(D2)发生在晚侏罗世的岩浆后冷却时期,其特征是发育了普遍的带有蚀变晕的东西走向矿脉,以及在横断构造中记录了南北向延伸的小型走向滑动断层和正断层。与最后一次变形事件(D3)相关的构造包括晚侏罗世至早白垩世的岩浆岩尖峰、岩脉和共轭走向滑动断层,它们在走向滑动机制中记录了西北-东南向到北-南向的缩短。D1变形与其他地区的研究相一致,其他地区的研究记录了整个侏罗纪沿弧线的NW-SE缩短和±正弦转位,这表明这种变形是区域性的,是由斜向俯冲辐合驱动的。与斜向辐合相关的变形集中在活跃的岩浆弧内,这是早期安第斯造山运动的一个重要过程。随着岩浆弧的东移,D2 和 D3 结构在岩浆弧边缘或前弧的低应力环境中形成。
{"title":"Magmatism and Polyphase Deformation in the Middle Jurassic Arc of Central Chile: Implications for the Tectonic Development of the Early Andean Margin","authors":"John S. Singleton, Gloria Arancibia, Diego Morata, Ignacia Pérez De La Maza","doi":"10.1029/2023tc008241","DOIUrl":"https://doi.org/10.1029/2023tc008241","url":null,"abstract":"The ∼173–164 Ma Papudo-Quintero plutonic complex near 32.5°S in central Chile records three deformation events that provide insight into the tectonic development of the early Andean margin. The first event (D<sub>1</sub>) includes: (a) high-temperature (&gt;600°C), coaxial-dominated strain along NE- to N-striking subvertical shear zones; (b) widespread emplacement of granitic dikes that dip gently to steeply NE; and (c) development of narrow (&lt;10 cm thick) strike-slip and oblique-reverse shear zones. These D<sub>1</sub> structures record NW-SE to WNW-ESE transpressional shortening with a component of sinistral shear parallel to the N-S trending magmatic arc. Zircon and apatite U-Pb dates and cross-cutting relations constrain most D<sub>1</sub> deformation to ∼166–164 Ma. The second event (D<sub>2</sub>) occurred during postmagmatic cooling in the Late Jurassic and was characterized by development of pervasive E-W-striking veins with alteration halos and minor strike-slip and normal faults that record N-S extension in a transtensional regime. Structures associated with the last deformation event (D<sub>3</sub>) include Late Jurassic to Early Cretaceous mafic dikes, veins, and conjugate strike-slip faults that record NW-SE to N-S shortening in a strike-slip regime. D<sub>1</sub> deformation is consistent with studies from other areas that document NW-SE shortening ± sinistral transpression along the arc throughout the Jurassic, suggesting this deformation was regional in scale and driven by oblique subduction convergence. Deformation associated with oblique convergence was localized within the active magmatic arc, which was an important process in the early Andean orogeny. As the arc migrated eastward, D<sub>2</sub> and D<sub>3</sub> structures formed in a low-stress regime in an arc margin or forearc setting.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Structure of Low-Angle Normal Faults and Tectono-Sedimentary Processes of Nascent Continental Core-Complexes in the SE South China Sea 中国南海东南部低角度正断层的三维结构与新生大陆核心复合体的构造沉积过程
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-29 DOI: 10.1029/2023tc008218
E. Legeay, G. Mohn, J. C. Ringenbach, W. Vetel, F. Sapin
This contribution explores the formation and evolution of hyper-extended basins, associated with the early stage of core complex formation, controlled by low-angle normal faults active at <30°. Based on a high-resolution industrial 3D seismic reflection survey along the southern margin of the South China Sea (SCS) (Dangerous Grounds), we mapped and analyzed the 3D geometry of low-angle normal fault systems and the related stratigraphy. Two main hyper-extended basins were documented, filled by up to 6 km of sediments including pre- to post-rift sequences. The observed normal faults on depth migrated seismic sections show an average dip angle of <30° and appear planar, characterized by continuous reflections with no clear steepening at depth and sole-out on distinct decollement levels. Detailed fault surface mapping reveals the occurrence of km-scale corrugations together with large wavelength undulation. The formation of these hyper-extended basins is associated with polyphased syn-rift infill during the development of the low-angle normal faults. The first syn-rift sequence appears as chaotic and discontinuous packages that has been dismembered and fragmented during the activity of low-angle normal faults. The second syn-rift package shows unexpected sedimentary wedges developing successively toward the footwall and the hangingwall. This geometry results from the interplay between the main low-angle normal fault and antithetic faults defining a so-called extensional fishtail. The deep structure of these basins shows nascent domes with limited evidence of magmatism. Eventually, these basins likely capture the earliest stage of core complex development in the proximal margin of the southern SCS.
这篇论文探讨了超延伸盆地的形成和演化,这些盆地与岩心复合体形成的早期阶段有关,由30°活动的低角度正断层控制。基于沿中国南海(SCS)南缘(危险地层)的高分辨率工业三维地震反射勘探,我们绘制并分析了低角度正断层系统的三维几何以及相关地层。我们记录了两个主要的超延伸盆地,由长达 6 千米的沉积物填充,包括断裂前至断裂后的序列。在地震剖面图上观察到的正断层平均倾角为 30°,呈平面状,其特征是反射连续,在深度上没有明显的陡峭化,并在明显的解理层上独显。详细的断层面测绘显示出千米级的波纹和大波长的起伏。这些超延伸盆地的形成与低角度正断层发育过程中的多期同步断裂填充有关。第一个同步断裂序列表现为混乱和不连续的包裹体,在低角度正断层活动期间被肢解和破碎。第二个同步断裂序列显示出意想不到的沉积楔,这些沉积楔相继向岩脚和悬壁方向发展。这种几何形状是主要的低角度正断层与反断层相互作用的结果,形成了所谓的延伸鱼尾。这些盆地的深部结构显示出新生穹隆,岩浆活动的证据有限。最终,这些盆地很可能捕捉到了南南中国海近缘核心复合体发展的最早阶段。
{"title":"3D Structure of Low-Angle Normal Faults and Tectono-Sedimentary Processes of Nascent Continental Core-Complexes in the SE South China Sea","authors":"E. Legeay, G. Mohn, J. C. Ringenbach, W. Vetel, F. Sapin","doi":"10.1029/2023tc008218","DOIUrl":"https://doi.org/10.1029/2023tc008218","url":null,"abstract":"This contribution explores the formation and evolution of hyper-extended basins, associated with the early stage of core complex formation, controlled by low-angle normal faults active at &lt;30°. Based on a high-resolution industrial 3D seismic reflection survey along the southern margin of the South China Sea (SCS) (Dangerous Grounds), we mapped and analyzed the 3D geometry of low-angle normal fault systems and the related stratigraphy. Two main hyper-extended basins were documented, filled by up to 6 km of sediments including pre- to post-rift sequences. The observed normal faults on depth migrated seismic sections show an average dip angle of &lt;30° and appear planar, characterized by continuous reflections with no clear steepening at depth and sole-out on distinct decollement levels. Detailed fault surface mapping reveals the occurrence of km-scale corrugations together with large wavelength undulation. The formation of these hyper-extended basins is associated with polyphased syn-rift infill during the development of the low-angle normal faults. The first syn-rift sequence appears as chaotic and discontinuous packages that has been dismembered and fragmented during the activity of low-angle normal faults. The second syn-rift package shows unexpected sedimentary wedges developing successively toward the footwall and the hangingwall. This geometry results from the interplay between the main low-angle normal fault and antithetic faults defining a so-called extensional fishtail. The deep structure of these basins shows nascent domes with limited evidence of magmatism. Eventually, these basins likely capture the earliest stage of core complex development in the proximal margin of the southern SCS.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-Collisional Reorganisation of the Eastern Alps in 4D – Crust and Mantle Structure 东阿尔卑斯山碰撞后的四维重组--地壳和地幔结构
IF 4.2 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-28 DOI: 10.1029/2024tc008374
Peter J. McPhee, Mark R. Handy
The Eastern Alps were affected by a profound post-collisional tectonic reorganisation in Neogene time, featuring indentation by the Adriatic upper plate, rapid uplift and filling of the eastern Molasse Basin, exhumation and eastward orogen-parallel transport of Paleogene metamorphic units in the orogenic core, and a shift from northward thrust propagation in the European plate to southward propagation in the Adriatic plate. We test the idea that these events were triggered by slab detachment by reconstructing the indentation process. This involves sequentially restoring N-S and E-W cross-sections of the orogenic wedge and correcting for out-of-section orogen-parallel transport with a map-view reconstruction. We propose two phases of indentation: Initially (23 and 14 Ma), the whole Adriatic crust acted as an indenter. Its northward motion was accommodated by upright folding and orogen-parallel extensional exhumation in the Tauern Window. This phase was followed (14 Ma to Present) by continued orogen-parallel transport of the orogenic wedge into the Pannonian Basin and deformation of the leading edge of the Adriatic indenter, forming the Southern Alps fold-thrust belt. The lower crust of the Southern Alps indented the base of the Venediger Nappes in the Tauern Window, forming a high-velocity (6.8–7.25 km/s) ridge in map view at 30–45 km depth. By correlating the post-23 Ma orogenic evolution with presently imaged European slab segments in P-wave teleseismic tomography, we discern two possible Neogene slab removal events: One from 23 to 19 Ma triggering tectonic reorganisation of the Eastern Alps and its foreland basin, and potentially a second event after 14 Ma.
东阿尔卑斯山在新近纪受到了碰撞后构造重组的深刻影响,其特点是亚得里亚海上板块的压入、莫拉塞盆地东部的快速隆起和充填、造山核心区古近纪变质单元的掘起和向东的造山平行运移,以及欧洲板块从向北的推力传播向亚得里亚海板块向南传播的转变。我们通过重建板块剥离过程来验证这些事件是由板块剥离引发的这一观点。这包括依次恢复造山楔的 N-S 和 E-W 截面,并通过地图视图重建校正断面外的造山平行运移。我们提出了两个缩进阶段:最初(23 和 14 马年),整个亚得里亚海地壳充当压痕器。它的向北运动被直立褶皱和陶恩窗(Tauern Window)中与造山运动平行的扩展掘进所容纳。在这一阶段之后(14Ma至今),造山楔继续向潘诺尼亚盆地平行移动,亚得里亚海压入体的前缘发生变形,形成了南阿尔卑斯山褶皱-推覆带。南阿尔卑斯山的下地壳在陶恩窗(Tauern Window)中压入了文迪格断陷岩(Venediger Nappes)的底部,在地图上形成了一个位于 30-45 千米深处的高速(6.8-7.25 千米/秒)山脊。通过将 23 Ma 后的造山演化与目前在 P 波远震断层扫描中成像的欧洲板块段进行关联,我们发现了两个可能的新近纪板块移除事件:一次发生在 23 至 19 马年,引发了东阿尔卑斯山及其前陆盆地的构造重组,另一次可能发生在 14 马年之后。
{"title":"Post-Collisional Reorganisation of the Eastern Alps in 4D – Crust and Mantle Structure","authors":"Peter J. McPhee, Mark R. Handy","doi":"10.1029/2024tc008374","DOIUrl":"https://doi.org/10.1029/2024tc008374","url":null,"abstract":"The Eastern Alps were affected by a profound post-collisional tectonic reorganisation in Neogene time, featuring indentation by the Adriatic upper plate, rapid uplift and filling of the eastern Molasse Basin, exhumation and eastward orogen-parallel transport of Paleogene metamorphic units in the orogenic core, and a shift from northward thrust propagation in the European plate to southward propagation in the Adriatic plate. We test the idea that these events were triggered by slab detachment by reconstructing the indentation process. This involves sequentially restoring N-S and E-W cross-sections of the orogenic wedge and correcting for out-of-section orogen-parallel transport with a map-view reconstruction. We propose two phases of indentation: Initially (23 and 14 Ma), the whole Adriatic crust acted as an indenter. Its northward motion was accommodated by upright folding and orogen-parallel extensional exhumation in the Tauern Window. This phase was followed (14 Ma to Present) by continued orogen-parallel transport of the orogenic wedge into the Pannonian Basin and deformation of the leading edge of the Adriatic indenter, forming the Southern Alps fold-thrust belt. The lower crust of the Southern Alps indented the base of the Venediger Nappes in the Tauern Window, forming a high-velocity (6.8–7.25 km/s) ridge in map view at 30–45 km depth. By correlating the post-23 Ma orogenic evolution with presently imaged European slab segments in P-wave teleseismic tomography, we discern two possible Neogene slab removal events: One from 23 to 19 Ma triggering tectonic reorganisation of the Eastern Alps and its foreland basin, and potentially a second event after 14 Ma.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":null,"pages":null},"PeriodicalIF":4.2,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tectonics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1