Low-Cost Implementation of an Adaptive Neural Network Controller for a Drive with an Elastic Shaft

Signals Pub Date : 2023-01-09 DOI:10.3390/signals4010003
Mateusz Malarczyk, Mateusz Zychlewicz, Radoslaw Stanislawski, M. Kaminski
{"title":"Low-Cost Implementation of an Adaptive Neural Network Controller for a Drive with an Elastic Shaft","authors":"Mateusz Malarczyk, Mateusz Zychlewicz, Radoslaw Stanislawski, M. Kaminski","doi":"10.3390/signals4010003","DOIUrl":null,"url":null,"abstract":"This paper deals with the implementation of an adaptive speed controller applied for two electrical machines coupled by a long shaft. The two main parts of the study are the synthesis of the neural adaptive controller and hardware implementation using a low-cost system based on an STM Discovery board. The framework between the control system, the power converters, and the motors is established with an ARM device. A radial basis function neural network (RBFNN) is used as an adaptive speed controller. The net coefficients are updated (online mode) to ensure high dynamics of the system and correct work under disturbance. The results contain transients achieved in simulations and experimental tests.","PeriodicalId":93815,"journal":{"name":"Signals","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/signals4010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper deals with the implementation of an adaptive speed controller applied for two electrical machines coupled by a long shaft. The two main parts of the study are the synthesis of the neural adaptive controller and hardware implementation using a low-cost system based on an STM Discovery board. The framework between the control system, the power converters, and the motors is established with an ARM device. A radial basis function neural network (RBFNN) is used as an adaptive speed controller. The net coefficients are updated (online mode) to ensure high dynamics of the system and correct work under disturbance. The results contain transients achieved in simulations and experimental tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹性轴传动自适应神经网络控制器的低成本实现
本文研究了一种适用于长轴耦合的两台电机的自适应速度控制器的实现。研究的两个主要部分是神经自适应控制器的综合和使用基于STM发现板的低成本系统的硬件实现。控制系统、功率转换器和电机之间的框架是用ARM设备建立的。采用径向基函数神经网络(RBFNN)作为自适应速度控制器。净系数被更新(在线模式),以确保系统的高动态性和在扰动下的正确工作。结果包括模拟和实验测试中实现的瞬态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Detection of Movement and Lead-Popping Artifacts in Polysomnography EEG Data. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques Correction: Martin et al. ApeTI: A Thermal Image Dataset for Face and Nose Segmentation with Apes. Signals 2024, 5, 147–164 On the Impulse Response of Singular Discrete LTI Systems and Three Fourier Transform Pairs Noncooperative Spectrum Sensing Strategy Based on Recurrence Quantification Analysis in the Context of the Cognitive Radio
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1