Random Forests in Count Data Modelling: An Analysis of the Influence of Data Features and Overdispersion on Regression Performance

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-12-01 DOI:10.1155/2022/2833537
C. A. Mushagalusa, A. B. Fandohan, R. G. Glèlè Kakaï
{"title":"Random Forests in Count Data Modelling: An Analysis of the Influence of Data Features and Overdispersion on Regression Performance","authors":"C. A. Mushagalusa, A. B. Fandohan, R. G. Glèlè Kakaï","doi":"10.1155/2022/2833537","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms, especially random forests (RFs), have become an integrated part of the modern scientific methodology and represent an efficient alternative to conventional parametric algorithms. This study aimed to assess the influence of data features and overdispersion on RF regression performance. We assessed the effect of types of predictors (100, 75, 50, and 20% continuous, and 100% categorical), the number of predictors (p = 816 and 24), and the sample size (N = 50, 250, and 1250) on RF parameter settings. We also compared RF performance to that of classical generalized linear models (Poisson, negative binomial, and zero-inflated Poisson) and the linear model applied to log-transformed data. Two real datasets were analysed to demonstrate the usefulness of RF for overdispersed data modelling. Goodness-of-fit statistics such as root mean square error (RMSE) and biases were used to determine RF accuracy and validity. Results revealed that the number of variables to be randomly selected for each split, the proportion of samples to train the model, the minimal number of samples within each terminal node, and RF regression performance are not influenced by the sample size, number, and type of predictors. However, the ratio of observations to the number of predictors affects the stability of the best RF parameters. RF performs well for all types of covariates and different levels of dispersion. The magnitude of dispersion does not significantly influence RF predictive validity. In contrast, its predictive accuracy is significantly influenced by the magnitude of dispersion in the response variable, conditional on the explanatory variables. RF has performed almost as well as the models of the classical Poisson family in the presence of overdispersion. Given RF’s advantages, it is an appropriate statistical alternative for counting data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/2833537","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning algorithms, especially random forests (RFs), have become an integrated part of the modern scientific methodology and represent an efficient alternative to conventional parametric algorithms. This study aimed to assess the influence of data features and overdispersion on RF regression performance. We assessed the effect of types of predictors (100, 75, 50, and 20% continuous, and 100% categorical), the number of predictors (p = 816 and 24), and the sample size (N = 50, 250, and 1250) on RF parameter settings. We also compared RF performance to that of classical generalized linear models (Poisson, negative binomial, and zero-inflated Poisson) and the linear model applied to log-transformed data. Two real datasets were analysed to demonstrate the usefulness of RF for overdispersed data modelling. Goodness-of-fit statistics such as root mean square error (RMSE) and biases were used to determine RF accuracy and validity. Results revealed that the number of variables to be randomly selected for each split, the proportion of samples to train the model, the minimal number of samples within each terminal node, and RF regression performance are not influenced by the sample size, number, and type of predictors. However, the ratio of observations to the number of predictors affects the stability of the best RF parameters. RF performs well for all types of covariates and different levels of dispersion. The magnitude of dispersion does not significantly influence RF predictive validity. In contrast, its predictive accuracy is significantly influenced by the magnitude of dispersion in the response variable, conditional on the explanatory variables. RF has performed almost as well as the models of the classical Poisson family in the presence of overdispersion. Given RF’s advantages, it is an appropriate statistical alternative for counting data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机森林计数数据建模:数据特征和过度分散对回归性能的影响分析
机器学习算法,特别是随机森林(RFs),已经成为现代科学方法论的一个组成部分,代表了传统参数算法的有效替代方案。本研究旨在评估数据特征和过色散对射频回归性能的影响。我们评估了预测因子类型(100、75、50和20%连续,100%分类)、预测因子数量(p = 816和24)和样本量(N = 50、250和1250)对射频参数设置的影响。我们还将射频性能与经典广义线性模型(泊松、负二项和零膨胀泊松)和应用于对数变换数据的线性模型进行了比较。分析了两个真实数据集,以证明RF对过度分散数据建模的有用性。拟合优度统计如均方根误差(RMSE)和偏倚被用来确定射频的准确性和有效性。结果表明,每次分割随机选择的变量数量、用于训练模型的样本比例、每个终端节点内的最小样本数量以及RF回归性能不受样本量、数量和预测因子类型的影响。然而,观测值与预测数的比值会影响最佳射频参数的稳定性。RF对所有类型的协变量和不同程度的分散表现良好。离散度的大小对射频预测效度没有显著影响。相反,它的预测精度受到响应变量的离散程度的显著影响,这取决于解释变量。在存在过色散的情况下,RF的表现几乎与经典泊松族模型一样好。考虑到RF的优点,它是统计数据的合适选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Intentions to move abroad among medical students: a cross-sectional study to investigate determinants and opinions. Analysis of Medical Rehabilitation Needs of 2023 Kahramanmaraş Earthquake Victims: Adıyaman Example. Efficacy of whole body vibration on fascicle length and joint angle in children with hemiplegic cerebral palsy. The change process questionnaire (CPQ): A psychometric validation. Clinical Practice Guidelines on Palliative Sedation Around the World: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1