C. A. Mushagalusa, A. B. Fandohan, R. G. Glèlè Kakaï
{"title":"Random Forests in Count Data Modelling: An Analysis of the Influence of Data Features and Overdispersion on Regression Performance","authors":"C. A. Mushagalusa, A. B. Fandohan, R. G. Glèlè Kakaï","doi":"10.1155/2022/2833537","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms, especially random forests (RFs), have become an integrated part of the modern scientific methodology and represent an efficient alternative to conventional parametric algorithms. This study aimed to assess the influence of data features and overdispersion on RF regression performance. We assessed the effect of types of predictors (100, 75, 50, and 20% continuous, and 100% categorical), the number of predictors (p = 816 and 24), and the sample size (N = 50, 250, and 1250) on RF parameter settings. We also compared RF performance to that of classical generalized linear models (Poisson, negative binomial, and zero-inflated Poisson) and the linear model applied to log-transformed data. Two real datasets were analysed to demonstrate the usefulness of RF for overdispersed data modelling. Goodness-of-fit statistics such as root mean square error (RMSE) and biases were used to determine RF accuracy and validity. Results revealed that the number of variables to be randomly selected for each split, the proportion of samples to train the model, the minimal number of samples within each terminal node, and RF regression performance are not influenced by the sample size, number, and type of predictors. However, the ratio of observations to the number of predictors affects the stability of the best RF parameters. RF performs well for all types of covariates and different levels of dispersion. The magnitude of dispersion does not significantly influence RF predictive validity. In contrast, its predictive accuracy is significantly influenced by the magnitude of dispersion in the response variable, conditional on the explanatory variables. RF has performed almost as well as the models of the classical Poisson family in the presence of overdispersion. Given RF’s advantages, it is an appropriate statistical alternative for counting data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/2833537","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning algorithms, especially random forests (RFs), have become an integrated part of the modern scientific methodology and represent an efficient alternative to conventional parametric algorithms. This study aimed to assess the influence of data features and overdispersion on RF regression performance. We assessed the effect of types of predictors (100, 75, 50, and 20% continuous, and 100% categorical), the number of predictors (p = 816 and 24), and the sample size (N = 50, 250, and 1250) on RF parameter settings. We also compared RF performance to that of classical generalized linear models (Poisson, negative binomial, and zero-inflated Poisson) and the linear model applied to log-transformed data. Two real datasets were analysed to demonstrate the usefulness of RF for overdispersed data modelling. Goodness-of-fit statistics such as root mean square error (RMSE) and biases were used to determine RF accuracy and validity. Results revealed that the number of variables to be randomly selected for each split, the proportion of samples to train the model, the minimal number of samples within each terminal node, and RF regression performance are not influenced by the sample size, number, and type of predictors. However, the ratio of observations to the number of predictors affects the stability of the best RF parameters. RF performs well for all types of covariates and different levels of dispersion. The magnitude of dispersion does not significantly influence RF predictive validity. In contrast, its predictive accuracy is significantly influenced by the magnitude of dispersion in the response variable, conditional on the explanatory variables. RF has performed almost as well as the models of the classical Poisson family in the presence of overdispersion. Given RF’s advantages, it is an appropriate statistical alternative for counting data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.