{"title":"Fission chambers for space effect reduction in the application of the area method: A new approach","authors":"J. Janczyszyn, G. Domańska, P. Stanisz","doi":"10.2478/nuka-2020-0026","DOIUrl":null,"url":null,"abstract":"Abstract The possibility of preparing fission chambers for the experimental determination of subcriticality without time-consuming corrections has been presented. The reactor detectors set consists of monoisotopic chambers. Each chamber is intended for a specific position in the system. Individual weights, rated a priori for all detectors in their positions, allow for quick calculation of whole system subcriticality. The inconveniences related to the spatial effect are minimized. This is achieved by computational simulation of the area method results, for each detector position and all possible fissionable and fissile nuclides. Next, one nuclide is selected, specific for the given position, presenting the smallest difference from the MCNP KCODE precisely estimated kkcode. The case study is made using the model of VENUS-F core.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"65 1","pages":"161 - 166"},"PeriodicalIF":0.7000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2020-0026","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract The possibility of preparing fission chambers for the experimental determination of subcriticality without time-consuming corrections has been presented. The reactor detectors set consists of monoisotopic chambers. Each chamber is intended for a specific position in the system. Individual weights, rated a priori for all detectors in their positions, allow for quick calculation of whole system subcriticality. The inconveniences related to the spatial effect are minimized. This is achieved by computational simulation of the area method results, for each detector position and all possible fissionable and fissile nuclides. Next, one nuclide is selected, specific for the given position, presenting the smallest difference from the MCNP KCODE precisely estimated kkcode. The case study is made using the model of VENUS-F core.
期刊介绍:
"Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences.
The fields of research include:
radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.