{"title":"Effect of Eugenol on Streptococcus mutans Adhesion on NiTi Orthodontic Wires: In Vitro and In Vivo Conditions","authors":"Nassiba Fatene, K. Mounaji, A. Soukri","doi":"10.1055/s-0041-1736372","DOIUrl":null,"url":null,"abstract":"Objective The purpose of this study was to compare the antibacterial effect of two types of Eugenol against Streptococcus mutans and then assess the effect of different concentrations of two types of Eugenol on S. mutans adhesion on Nickel-Titanium (NiTi) orthodontic wires in comparison to in vivo wires with fluoride-based hygiene regimen.\n Material and methods Culture of Streptococcus mutans with NiTi orthodontic wires was done. Different media were prepared by adding 100%, 50%, 25%, and 12.5% of two origins of Eugenol (one biological obtained by hydrodistillation of Syzygium aromaticum and one chemical already prepared available in drugstores for dental use (Idental, MOROCCO, lot number: UAN/17–211/1). Three sizes of NiTi wires (0.016 inch, 0.016 × 0.022 inch, 0.017 × 0.025 inch) were retrieved from adult patients undergoing orthodontic treatment after 1 month of setting them up in the mouth. After incubation, colony forming unites were calculated and a SEM analysis was done to the surface of each wire. ANOVA test was done between all groups to find statistical differences and post-hoc t-test with Bonferroni analysis was performed to elucidate differences between all groups with α = 0.05.\n Results Eugenol has an anti-bacterial effect against S. mutans. The biological Eugenol has greater effect than the chemical one. The same observations were done for anti-adherent effect, the biological Eugenol demonstrated the highest anti-adherent effect at all concentrations while the effect of the chemical Eugenol was the lowest.\n Conclusions The origin and the extraction mode of Eugenol have a crucial role in its antimicrobial and anti-adherent effect. Eugenol might constitute an alternative to Fluoride because it has an anti-adherent effect, limiting the incidence of white spot lesions.","PeriodicalId":37771,"journal":{"name":"European Journal of General Dentistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of General Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0041-1736372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0
Abstract
Objective The purpose of this study was to compare the antibacterial effect of two types of Eugenol against Streptococcus mutans and then assess the effect of different concentrations of two types of Eugenol on S. mutans adhesion on Nickel-Titanium (NiTi) orthodontic wires in comparison to in vivo wires with fluoride-based hygiene regimen.
Material and methods Culture of Streptococcus mutans with NiTi orthodontic wires was done. Different media were prepared by adding 100%, 50%, 25%, and 12.5% of two origins of Eugenol (one biological obtained by hydrodistillation of Syzygium aromaticum and one chemical already prepared available in drugstores for dental use (Idental, MOROCCO, lot number: UAN/17–211/1). Three sizes of NiTi wires (0.016 inch, 0.016 × 0.022 inch, 0.017 × 0.025 inch) were retrieved from adult patients undergoing orthodontic treatment after 1 month of setting them up in the mouth. After incubation, colony forming unites were calculated and a SEM analysis was done to the surface of each wire. ANOVA test was done between all groups to find statistical differences and post-hoc t-test with Bonferroni analysis was performed to elucidate differences between all groups with α = 0.05.
Results Eugenol has an anti-bacterial effect against S. mutans. The biological Eugenol has greater effect than the chemical one. The same observations were done for anti-adherent effect, the biological Eugenol demonstrated the highest anti-adherent effect at all concentrations while the effect of the chemical Eugenol was the lowest.
Conclusions The origin and the extraction mode of Eugenol have a crucial role in its antimicrobial and anti-adherent effect. Eugenol might constitute an alternative to Fluoride because it has an anti-adherent effect, limiting the incidence of white spot lesions.
期刊介绍:
European Journal of General Dentistry (EJGD) is one of the leading open-access international dental journal within the field of Dentistry. The aim of EJGD is publishing novel and high-quality research papers, as well as to influence the practice of dentistry at clinician, research, industry and policy-maker level on an international basis. EJGD publishes articles on all disciplines of dentistry including the cariology, orthodontics, oral surgery, preventive dentistry, periodontology, endodontology, operative dentistry, fixed and removable prosthodontics, dental biomaterials science, long-term clinical trials including epidemiology and oral health, technology transfer of new scientific instrumentation or procedures, as well as clinically relevant oral biology and translational research.Moreover, EJGD also publish the scientific researches evaluating the use of new biomaterials, new drugs and new methods for treatment of patients with different kinds of oral and maxillofacial diseases or defects, the diagnosis of oral and maxillofacial diseases with new methods, etc. Moreover, researches on the quality of life, psychological interventions, improving disease treatment outcomes, the prevention, diagnosis and management of cancer therapeutic complications, rehabilitation, palliative and end of life care, and support teamwork for cancer care and oral health care for old patients are also welcome. EJGD publishes research articles, case reports, reviews and comparison studies evaluating materials and methods in the all fields of related to dentistry.