W Brett Johnson, Aaron Young, Stephen Goldman, Jon Wilson, Joseph F Alderete, W Lee Childers
{"title":"Exoskeletal solutions to enable mobility with a lower leg fracture in austere environments.","authors":"W Brett Johnson, Aaron Young, Stephen Goldman, Jon Wilson, Joseph F Alderete, W Lee Childers","doi":"10.1017/wtc.2022.26","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment and evacuation of people with lower limb fractures in austere environments presents unique challenges that assistive exoskeletal devices could address. In these dangerous situations, independent mobility for the injured can preserve their vital capabilities so that they can safely evacuate and minimize the need for additional personnel to help. This expert view article discusses how different exoskeleton archetypes could provide independent mobility while satisfying the requisite needs for portability, maintainability, durability, and adaptability to be available and useful within austere environments. The authors also discuss areas of development that would enable exoskeletons to operate more effectively in these scenarios as well as preserve the health of the injured limb so that definitive treatment after evacuation will produce better outcomes.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":" ","pages":"e5"},"PeriodicalIF":4.7000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2022.26","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The treatment and evacuation of people with lower limb fractures in austere environments presents unique challenges that assistive exoskeletal devices could address. In these dangerous situations, independent mobility for the injured can preserve their vital capabilities so that they can safely evacuate and minimize the need for additional personnel to help. This expert view article discusses how different exoskeleton archetypes could provide independent mobility while satisfying the requisite needs for portability, maintainability, durability, and adaptability to be available and useful within austere environments. The authors also discuss areas of development that would enable exoskeletons to operate more effectively in these scenarios as well as preserve the health of the injured limb so that definitive treatment after evacuation will produce better outcomes.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico