A non-invasive method of glucose monitoring using FR4 material based microwave antenna sensor

IF 1.9 4区 材料科学 Q3 Materials Science Science and Engineering of Composite Materials Pub Date : 2023-01-01 DOI:10.1515/secm-2022-0187
Anveshkumar Nella, R. Aldhaheri, Jagadeesh Babu Kamili, N. Sobahi
{"title":"A non-invasive method of glucose monitoring using FR4 material based microwave antenna sensor","authors":"Anveshkumar Nella, R. Aldhaheri, Jagadeesh Babu Kamili, N. Sobahi","doi":"10.1515/secm-2022-0187","DOIUrl":null,"url":null,"abstract":"Abstract This work presents a unique non-invasive method for monitoring glucose levels in blood using a planar Yagi–Uda antenna as a microwave sensor. The proposed antenna, operating at 5.5 GHz, exhibits a directional radiation pattern with a peak gain of 6.74 dBi. A low-cost FR4 material of size 30 mm × 40 mm × 1.6 mm is used as a dielectric substrate. A human finger phantom, comprising layers of skin, fat, blood, and bone, is created at 5.5 GHz in EM simulation tool for mimicking a real human finger. The finger phantom is positioned at different locations around the antenna and corresponding frequency shifts are remarked to a variation in glucose concentration from 0–500 mg/dL. An exemplary frequency shift of maximum 26 MHz is recorded when the phantom is placed at the bottom of the antenna. Time domain analysis is also carried out to understand the effect of glucose concentration variation on the output signal amplitude and delay. Simulated antenna results are found to be in stupendous agreement with the measured results. An experiment of placing a real human finger around the fabricated antenna also presents a splendid correspondence with the simulated results. Hence, this mechanism can be expedient for monitoring glucose levels in blood.","PeriodicalId":21480,"journal":{"name":"Science and Engineering of Composite Materials","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Engineering of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/secm-2022-0187","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This work presents a unique non-invasive method for monitoring glucose levels in blood using a planar Yagi–Uda antenna as a microwave sensor. The proposed antenna, operating at 5.5 GHz, exhibits a directional radiation pattern with a peak gain of 6.74 dBi. A low-cost FR4 material of size 30 mm × 40 mm × 1.6 mm is used as a dielectric substrate. A human finger phantom, comprising layers of skin, fat, blood, and bone, is created at 5.5 GHz in EM simulation tool for mimicking a real human finger. The finger phantom is positioned at different locations around the antenna and corresponding frequency shifts are remarked to a variation in glucose concentration from 0–500 mg/dL. An exemplary frequency shift of maximum 26 MHz is recorded when the phantom is placed at the bottom of the antenna. Time domain analysis is also carried out to understand the effect of glucose concentration variation on the output signal amplitude and delay. Simulated antenna results are found to be in stupendous agreement with the measured results. An experiment of placing a real human finger around the fabricated antenna also presents a splendid correspondence with the simulated results. Hence, this mechanism can be expedient for monitoring glucose levels in blood.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FR4材料的微波天线传感器的无创血糖监测方法
摘要这项工作提出了一种独特的非侵入性方法,使用平面八木天线作为微波传感器来监测血液中的葡萄糖水平。拟议的天线,工作频率为5.5 GHz,呈现出峰值增益为6.74的定向辐射图 dBi。尺寸为30的低成本FR4材料 毫米×40 毫米×1.6 mm作为电介质基板。在5.5创建了一个由皮肤、脂肪、血液和骨骼层组成的人体手指模型 GHz的EM模拟工具,用于模拟真实的人类手指。手指模型位于天线周围的不同位置,相应的频率偏移表示葡萄糖浓度在0-500之间的变化 mg/dL。最大26的示例性频移 当模型放置在天线底部时,会记录MHz。还进行了时域分析,以了解葡萄糖浓度变化对输出信号幅度和延迟的影响。模拟天线的结果与实测结果非常吻合。在制作的天线周围放置一根真人手指的实验也与模拟结果非常吻合。因此,这种机制对于监测血液中的葡萄糖水平是有利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science and Engineering of Composite Materials
Science and Engineering of Composite Materials 工程技术-材料科学:复合
CiteScore
3.10
自引率
5.30%
发文量
0
审稿时长
4 months
期刊介绍: Science and Engineering of Composite Materials is a quarterly publication which provides a forum for discussion of all aspects related to the structure and performance under simulated and actual service conditions of composites. The publication covers a variety of subjects, such as macro and micro and nano structure of materials, their mechanics and nanomechanics, the interphase, physical and chemical aging, fatigue, environmental interactions, and process modeling. The interdisciplinary character of the subject as well as the possible development and use of composites for novel and specific applications receives special attention.
期刊最新文献
Calculation of specific surface area for tight rock characterization through high-pressure mercury intrusion Sustainable concrete with partial substitution of paper pulp ash: A review A novel 3D woven carbon fiber composite with super interlayer performance hybridized by CNT tape and copper wire simultaneously The assessment of color adjustment potentials for monoshade universal composites Optimizing bending strength of laminated bamboo using confined bamboo with softwoods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1