Jennifer Eickworth, Jonas Wagner, Philipp Daum, Martin Dienwiebel, Thomas Rühle
{"title":"Gas phase lubrication study with an organic friction modifier","authors":"Jennifer Eickworth, Jonas Wagner, Philipp Daum, Martin Dienwiebel, Thomas Rühle","doi":"10.1002/ls.1620","DOIUrl":null,"url":null,"abstract":"<p>Friction modifier additives play a crucial role in controlling friction and wear of lubricated tribological systems. Model experiments in a controllable atmosphere performed by integrating a tribometer into a system of in situ surface analytical methods in vacuum can give insights into the additives functionality. In this work, thin, well-defined layers of an organic friction modifier (OFM) are adsorbed onto an iron oxide surface by means of an effusion cell immediately before measuring friction and wear. The results show that contrary to the assumption that homogeneous layers are formed, this OFM accumulates in droplets on the surface. Droplet number and radius increase with evaporation time. In friction tests, the smallest friction values are found for a low coverage of droplets. For larger droplets, friction increases due to a capillary neck of additive that forms between the sliding surfaces and is dragged along during the friction test.</p>","PeriodicalId":18114,"journal":{"name":"Lubrication Science","volume":"35 1","pages":"40-55"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ls.1620","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubrication Science","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ls.1620","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Friction modifier additives play a crucial role in controlling friction and wear of lubricated tribological systems. Model experiments in a controllable atmosphere performed by integrating a tribometer into a system of in situ surface analytical methods in vacuum can give insights into the additives functionality. In this work, thin, well-defined layers of an organic friction modifier (OFM) are adsorbed onto an iron oxide surface by means of an effusion cell immediately before measuring friction and wear. The results show that contrary to the assumption that homogeneous layers are formed, this OFM accumulates in droplets on the surface. Droplet number and radius increase with evaporation time. In friction tests, the smallest friction values are found for a low coverage of droplets. For larger droplets, friction increases due to a capillary neck of additive that forms between the sliding surfaces and is dragged along during the friction test.
期刊介绍:
Lubrication Science is devoted to high-quality research which notably advances fundamental and applied aspects of the science and technology related to lubrication. It publishes research articles, short communications and reviews which demonstrate novelty and cutting edge science in the field, aiming to become a key specialised venue for communicating advances in lubrication research and development.
Lubrication is a diverse discipline ranging from lubrication concepts in industrial and automotive engineering, solid-state and gas lubrication, micro & nanolubrication phenomena, to lubrication in biological systems. To investigate these areas the scope of the journal encourages fundamental and application-based studies on:
Synthesis, chemistry and the broader development of high-performing and environmentally adapted lubricants and additives.
State of the art analytical tools and characterisation of lubricants, lubricated surfaces and interfaces.
Solid lubricants, self-lubricating coatings and composites, lubricating nanoparticles.
Gas lubrication.
Extreme-conditions lubrication.
Green-lubrication technology and lubricants.
Tribochemistry and tribocorrosion of environment- and lubricant-interface interactions.
Modelling of lubrication mechanisms and interface phenomena on different scales: from atomic and molecular to mezzo and structural.
Modelling hydrodynamic and thin film lubrication.
All lubrication related aspects of nanotribology.
Surface-lubricant interface interactions and phenomena: wetting, adhesion and adsorption.
Bio-lubrication, bio-lubricants and lubricated biological systems.
Other novel and cutting-edge aspects of lubrication in all lubrication regimes.