pMB FLASH - Status and Perspectives of Combining Proton Minibeam with FLASH Radiotherapy

Judith Reindl and Stefanie Girst
{"title":"pMB FLASH - Status and Perspectives of Combining Proton Minibeam with FLASH Radiotherapy","authors":"Judith Reindl and Stefanie Girst","doi":"10.33696/cancerimmunol.1.003","DOIUrl":null,"url":null,"abstract":"Proton minibeam radiotherapy (pMBRT) is an external beam radiotherapy method with reduced side effects by taking advantage of spatial fractionation in the normal tissue. Due to scattering, the delivered small beams widen in the tissue ensuring a homogeneous dose distribution in the tumor. In this review, the physical and biological principles regarding dose distribution and healing effects are explained. In the last decade, several preclinical studies have been conducted addressing normal tissue sparing and tumor control in-vitro and in-vivo, using human skin tissue and mouse or rat models. The major results acquired in these studies are summarized. A further newly emerging therapy method is FLASH radiotherapy, i.e. the treatment using ultra-high dose rates. The possibility of combining these methods in proton minibeam FLASH therapy (pMB FLASH) is worked out. Additionally, technical feasibility and limitations will be discussed by looking at simulations as well as preclinical studies and also pointing out new ways of delivering the desired tumor dose, such as interlacing. We will also highlight the opportunities that emerge regarding high dose radiation, hypofractionation and the combination with immunotherapy.","PeriodicalId":73633,"journal":{"name":"Journal of cancer immunology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cancer immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33696/cancerimmunol.1.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Proton minibeam radiotherapy (pMBRT) is an external beam radiotherapy method with reduced side effects by taking advantage of spatial fractionation in the normal tissue. Due to scattering, the delivered small beams widen in the tissue ensuring a homogeneous dose distribution in the tumor. In this review, the physical and biological principles regarding dose distribution and healing effects are explained. In the last decade, several preclinical studies have been conducted addressing normal tissue sparing and tumor control in-vitro and in-vivo, using human skin tissue and mouse or rat models. The major results acquired in these studies are summarized. A further newly emerging therapy method is FLASH radiotherapy, i.e. the treatment using ultra-high dose rates. The possibility of combining these methods in proton minibeam FLASH therapy (pMB FLASH) is worked out. Additionally, technical feasibility and limitations will be discussed by looking at simulations as well as preclinical studies and also pointing out new ways of delivering the desired tumor dose, such as interlacing. We will also highlight the opportunities that emerge regarding high dose radiation, hypofractionation and the combination with immunotherapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pMB FLASH-质子微束与FLASH联合放射治疗的现状与展望
质子微束放射治疗(pMBRT)是一种利用正常组织中的空间分割减少副作用的外束放射治疗方法。由于散射,输送的小光束在组织中变宽,确保肿瘤中的剂量分布均匀。在这篇综述中,解释了有关剂量分布和愈合效果的物理和生物学原理。在过去的十年里,已经使用人类皮肤组织和小鼠或大鼠模型进行了几项临床前研究,以解决体外和体内正常组织保留和肿瘤控制问题。总结了这些研究的主要成果。另一种新出现的治疗方法是FLASH放射治疗,即使用超高剂量率的治疗。探讨了将这些方法结合应用于质子微束FLASH治疗的可能性。此外,还将通过模拟和临床前研究来讨论技术可行性和局限性,并指出提供所需肿瘤剂量的新方法,如交错。我们还将强调在高剂量辐射、低分割和与免疫疗法结合方面出现的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Role of Tumor and Host Microbiome on Immunotherapy Response in Urologic Cancers Role of a Training Simulator for Kidney Biopsy and Tumor Removal Procedures in Complex Positioning Scenarios: The Key Challenges Perioperative Immune Checkpoint Blockade for Muscle-Invasive and Metastatic Bladder Cancer. Enhancing the Efficacy of CAR-T Cell Therapy: A Comprehensive Exploration of Cellular Strategies and Molecular Dynamics. Combining EGFR and KRAS G12C Inhibitors for KRAS G12C Mutated Advanced Colorectal Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1