1H, 13C, 15N backbone chemical shift assignments of the extended ARID domain in human AT-rich interactive domain protein 5a (Arid5a)

IF 0.8 4区 生物学 Q4 BIOPHYSICS Biomolecular NMR Assignments Pub Date : 2023-05-02 DOI:10.1007/s12104-023-10130-w
Julian von Ehr, Sophie Marianne Korn, Lena Weiß, Andreas Schlundt
{"title":"1H, 13C, 15N backbone chemical shift assignments of the extended ARID domain in human AT-rich interactive domain protein 5a (Arid5a)","authors":"Julian von Ehr,&nbsp;Sophie Marianne Korn,&nbsp;Lena Weiß,&nbsp;Andreas Schlundt","doi":"10.1007/s12104-023-10130-w","DOIUrl":null,"url":null,"abstract":"<div><p>The family of AT-rich interactive domain (ARID) containing proteins -<i>Arids</i>- contains 15 members that have almost exclusively been described as DNA-binding proteins. Interestingly, a decade ago the family member <i>Arid5a</i> was found to bind and stabilize mRNAs of immune system key players and thereby account for driving inflammatory and autoimmune diseases. How exactly binding to DNA and RNA is coordinated by the <i>Arid5a</i> ARID domain remains unknown, mainly due to the lack of atom-resolved information on nucleic acid-binding. This in particular applies to the protein’s ARID domain, despite the comfortable size of its core unit for NMR-based investigations. Furthermore, the core domain of ARID domains is found to be extended by functionally relevant, often flexible stretches, but whether such elongations are present and crucial for the versatile <i>Arid5a</i> functions is unknown. We here provide a near-complete NMR backbone resonance assignment of the <i>Arid5a</i> ARID domain with N- and C-terminal extensions, which serves as a basis for further studies of its nucleic acid-binding preferences and targeted inhibition by means of NMR. Our data thus significantly contribute to unravelling mechanisms of <i>Arid5a</i>-mediated gene regulation and diseases.</p></div>","PeriodicalId":492,"journal":{"name":"Biomolecular NMR Assignments","volume":"17 1","pages":"121 - 127"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12104-023-10130-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular NMR Assignments","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s12104-023-10130-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The family of AT-rich interactive domain (ARID) containing proteins -Arids- contains 15 members that have almost exclusively been described as DNA-binding proteins. Interestingly, a decade ago the family member Arid5a was found to bind and stabilize mRNAs of immune system key players and thereby account for driving inflammatory and autoimmune diseases. How exactly binding to DNA and RNA is coordinated by the Arid5a ARID domain remains unknown, mainly due to the lack of atom-resolved information on nucleic acid-binding. This in particular applies to the protein’s ARID domain, despite the comfortable size of its core unit for NMR-based investigations. Furthermore, the core domain of ARID domains is found to be extended by functionally relevant, often flexible stretches, but whether such elongations are present and crucial for the versatile Arid5a functions is unknown. We here provide a near-complete NMR backbone resonance assignment of the Arid5a ARID domain with N- and C-terminal extensions, which serves as a basis for further studies of its nucleic acid-binding preferences and targeted inhibition by means of NMR. Our data thus significantly contribute to unravelling mechanisms of Arid5a-mediated gene regulation and diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类富含at的相互作用结构域蛋白5a (Arid5a)扩展的ARID结构域的1H, 13C, 15N主链化学位移定位
富含at的相互作用结构域(ARID)蛋白家族包含15个成员,这些成员几乎完全被描述为dna结合蛋白。有趣的是,十年前,家族成员Arid5a被发现结合并稳定免疫系统关键参与者的mrna,从而导致炎症和自身免疫性疾病。由于缺乏关于核酸结合的原子解析信息,Arid5a ARID结构域如何准确地协调与DNA和RNA的结合尚不清楚。这尤其适用于蛋白质的ARID结构域,尽管其核心单元的大小适合基于核磁共振的研究。此外,研究发现,ARID结构域的核心结构域通过功能相关的、通常是灵活的延伸进行了扩展,但这种延伸是否存在,是否对多功能的Arid5a功能至关重要,尚不清楚。我们在此提供了Arid5a的N端和c端扩展的ARID结构域的近乎完整的核磁共振骨架共振分配,这为进一步研究其核酸结合偏好和靶向抑制提供了基础。因此,我们的数据显著有助于揭示arid5a介导的基因调控和疾病的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomolecular NMR Assignments
Biomolecular NMR Assignments 生物-光谱学
CiteScore
1.70
自引率
11.10%
发文量
59
审稿时长
6-12 weeks
期刊介绍: Biomolecular NMR Assignments provides a forum for publishing sequence-specific resonance assignments for proteins and nucleic acids as Assignment Notes. Chemical shifts for NMR-active nuclei in macromolecules contain detailed information on molecular conformation and properties. Publication of resonance assignments in Biomolecular NMR Assignments ensures that these data are deposited into a public database at BioMagResBank (BMRB; http://www.bmrb.wisc.edu/), where they are available to other researchers. Coverage includes proteins and nucleic acids; Assignment Notes are processed for rapid online publication and are published in biannual online editions in June and December.
期刊最新文献
1H, 15N and 13C backbone resonance assignment of the N-terminal region of Zika virus NS4B protein in detergent micelles. Backbone 1H, 15N, and 13C resonance assignments of the FF1 domain from P190A RhoGAP in 5 and 8 M urea Imino chemical shift assignments of tRNAAsp, tRNAVal and tRNAPhe from Escherichia coli NMR assignment of the conserved bacterial DNA replication protein DnaA domain IV Backbone assignments of the biotin carboxyl carrier protein domain of Propionyl CoA carboxylase of Leishmania major and its interaction with its cognate Biotin protein ligase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1