{"title":"Evaluating aircraft cockpit emotion through a neural network approach","authors":"Yanhao Chen, Suihuai Yu, Jianjie Chu, Dengkai Chen, Mingjiu Yu","doi":"10.1017/S0890060420000475","DOIUrl":null,"url":null,"abstract":"Abstract Studies show that there are shortcomings in applying conventional methods for the emotional evaluation of the aircraft cockpit. In order to resolve this problem, a more efficient cockpit emotion evaluation system is established in the present study to simply and quickly obtain the cockpit emotion evaluation value. To this end, the neural network is applied to construct an emotional model to evaluate the emotional prediction of the interior design of the aircraft cockpit. Moreover, several technologies and the Kansei engineering method are applied to acquire the cockpit interior emotional evaluation data for typical aircraft models. In this regard, the radical basis function neural network (RBFNN), Elman neural network (ENN), and the general regression neural network (GRNN) are applied to construct the sentimental prediction evaluation model. Then, the three models are comprehensively compared through factors such as the model evaluation criteria, network structure, and network parameters. Obtained experimental results indicate that the GRNN not only has the highest classification accuracy but also has the highest stability in comparison to the other two neural networks, so that it is a more appropriate method for the emotional evaluation of the aircraft cockpit. Results of the present study provide decision supports for the emotional evaluation of the cockpit interior space.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":"35 1","pages":"81 - 98"},"PeriodicalIF":1.7000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0890060420000475","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060420000475","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract Studies show that there are shortcomings in applying conventional methods for the emotional evaluation of the aircraft cockpit. In order to resolve this problem, a more efficient cockpit emotion evaluation system is established in the present study to simply and quickly obtain the cockpit emotion evaluation value. To this end, the neural network is applied to construct an emotional model to evaluate the emotional prediction of the interior design of the aircraft cockpit. Moreover, several technologies and the Kansei engineering method are applied to acquire the cockpit interior emotional evaluation data for typical aircraft models. In this regard, the radical basis function neural network (RBFNN), Elman neural network (ENN), and the general regression neural network (GRNN) are applied to construct the sentimental prediction evaluation model. Then, the three models are comprehensively compared through factors such as the model evaluation criteria, network structure, and network parameters. Obtained experimental results indicate that the GRNN not only has the highest classification accuracy but also has the highest stability in comparison to the other two neural networks, so that it is a more appropriate method for the emotional evaluation of the aircraft cockpit. Results of the present study provide decision supports for the emotional evaluation of the cockpit interior space.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.