Wave forecast in the Atlantic Ocean using a double-stage ConvLSTM network

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric and Oceanic Science Letters Pub Date : 2023-07-01 DOI:10.1016/j.aosl.2023.100347
Lin Ouyang , Fenghua Ling , Yue Li , Lei Bai , Jing-Jia Luo
{"title":"Wave forecast in the Atlantic Ocean using a double-stage ConvLSTM network","authors":"Lin Ouyang ,&nbsp;Fenghua Ling ,&nbsp;Yue Li ,&nbsp;Lei Bai ,&nbsp;Jing-Jia Luo","doi":"10.1016/j.aosl.2023.100347","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate forecasting of ocean waves is of great importance to the safety of marine transportation. Despite wave forecasts having been improved, the current level of prediction skill is still far from satisfactory. Here, the authors propose a new physically informed deep learning model, named Double-stage ConvLSTM (D-ConvLSTM), to improve wave forecasts in the Atlantic Ocean. The waves in the next three consecutive days are predicted by feeding the deep learning model with the observed wave conditions in the preceding two days and the simultaneous ECMWF Reanalysis v5 (ERA5) wind forcing during the forecast period. The prediction skill of the <span>d</span>-ConvLSTM model was compared with that of two other forecasting methods—namely, the wave persistence forecast and the original ConvLSTM model. The results showed an increasing prediction error with the forecast lead time when the forecasts were evaluated using ERA5 reanalysis data. The <span>d</span>-ConvLSTM model outperformed the other two models in terms of wave prediction accuracy, with a root-mean-square error of lower than 0.4 m and an anomaly correlation coefficient skill of ∼0.80 at lead times of up to three days. In addition, a similar prediction was generated when the wind forcing was replaced by the IFS forecasted wind, suggesting that the <span>d</span>-ConvLSTM model is comparable to the Wave Model of European Centre for Medium-Range Weather Forecasts (ECMWF-WAM), but more economical and time-saving.</p><p>摘要</p><p>海浪预报对海上运输安全至关重要. 本研究提出了一种涵盖物理信息的深度学习模型Double-stage ConvLSTM (D-ConvLSTM) 以改进大西洋的海浪预报. 将D-ConvLSTM模型与海浪持续性预测和原始ConvLSTM模型的预测技巧进行对比. 结果表明, 预测误差随着预测时长的增加而增加. D-ConvLSTM模型在预测准确度方面优于前二者, 且第三天预测的均方根误差低于0.4 m, 距平相关系数约在0.8. 此外, 当使用IFS预测风替代再分析风时, 能够产生相似的预测效果. 这表明D-ConvLSTM模型的预测能力能够与ECMWF-WAM模式相当, 且更节省计算资源和时间.</p></div>","PeriodicalId":47210,"journal":{"name":"Atmospheric and Oceanic Science Letters","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Science Letters","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674283423000223","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 3

Abstract

Accurate forecasting of ocean waves is of great importance to the safety of marine transportation. Despite wave forecasts having been improved, the current level of prediction skill is still far from satisfactory. Here, the authors propose a new physically informed deep learning model, named Double-stage ConvLSTM (D-ConvLSTM), to improve wave forecasts in the Atlantic Ocean. The waves in the next three consecutive days are predicted by feeding the deep learning model with the observed wave conditions in the preceding two days and the simultaneous ECMWF Reanalysis v5 (ERA5) wind forcing during the forecast period. The prediction skill of the d-ConvLSTM model was compared with that of two other forecasting methods—namely, the wave persistence forecast and the original ConvLSTM model. The results showed an increasing prediction error with the forecast lead time when the forecasts were evaluated using ERA5 reanalysis data. The d-ConvLSTM model outperformed the other two models in terms of wave prediction accuracy, with a root-mean-square error of lower than 0.4 m and an anomaly correlation coefficient skill of ∼0.80 at lead times of up to three days. In addition, a similar prediction was generated when the wind forcing was replaced by the IFS forecasted wind, suggesting that the d-ConvLSTM model is comparable to the Wave Model of European Centre for Medium-Range Weather Forecasts (ECMWF-WAM), but more economical and time-saving.

摘要

海浪预报对海上运输安全至关重要. 本研究提出了一种涵盖物理信息的深度学习模型Double-stage ConvLSTM (D-ConvLSTM) 以改进大西洋的海浪预报. 将D-ConvLSTM模型与海浪持续性预测和原始ConvLSTM模型的预测技巧进行对比. 结果表明, 预测误差随着预测时长的增加而增加. D-ConvLSTM模型在预测准确度方面优于前二者, 且第三天预测的均方根误差低于0.4 m, 距平相关系数约在0.8. 此外, 当使用IFS预测风替代再分析风时, 能够产生相似的预测效果. 这表明D-ConvLSTM模型的预测能力能够与ECMWF-WAM模式相当, 且更节省计算资源和时间.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用双级ConvLSTM网络的大西洋海浪预报
准确的海浪预报对海上运输的安全具有重要意义。尽管海浪预报已经得到了改进,但目前的预测技能水平仍远不能令人满意。在这里,作者提出了一种新的物理信息深度学习模型,称为双阶段ConvLSTM (D-ConvLSTM),以改善大西洋的海浪预报。深度学习模型将前两天的观测海浪情况和预报期内ECMWF Reanalysis v5 (ERA5)的风强迫资料同时输入,预测未来三天的海浪。将d-ConvLSTM模型的预测能力与波浪持续预报和原ConvLSTM模型的预测能力进行比较。结果表明,利用ERA5再分析数据对预报进行评价时,预报误差随预报提前期的增大而增大。d-ConvLSTM模型在波浪预测精度方面优于其他两种模型,在长达三天的预估时间内,其均方根误差低于0.4 m,异常相关系数技能为0.80。此外,当风强迫被IFS预测的风取代时,也产生了类似的预测,这表明d-ConvLSTM模式与欧洲中期天气预报中心(ECMWF-WAM)的波浪模式相当,但更经济、更省时。本研究提出了一种涵盖物理信息的深度学习模型双级ConvLSTM (D-ConvLSTM)以改进大西洋的海浪预报。ConvLSTM。结果表明, 预测误差随着预测时长的增加而增加. D-ConvLSTM模型在预测准确度方面优于前二者,且第三天预测的均方根误差低于0.4米,距平相关系数约在0.8。“”“”“”“”“”“”这表明D-ConvLSTM模型的预测能力能够与ECMWF-WAM模式相当,且更节省计算资源和时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric and Oceanic Science Letters
Atmospheric and Oceanic Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.20
自引率
8.70%
发文量
925
审稿时长
12 weeks
期刊最新文献
Projected changes in extreme snowfall events over the Tibetan Plateau based on a set of RCM simulations Research progress on the water vapor channel within the Yarlung Zsangbo Grand Canyon, China Isolated deep convections over the Tibetan Plateau in the rainy season during 2001–2020 A study on the simulation of carbon and water fluxes of Dangxiong alpine meadow and its response to climate change Variation in the permafrost active layer over the Tibetan Plateau during 1980–2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1