Mass distribution descriptors in modelling of sorption properties

IF 0.3 Q4 CHEMISTRY, MULTIDISCIPLINARY Chemical Bulletin of Kazakh National University Pub Date : 2018-03-30 DOI:10.15328/CB968
Akyl S. Tulegenov, B. Kenzhaliev, Zhansaya Qyzyrbek-qyzy Seilkhanova, Madina Muratbekovna Sartayeva
{"title":"Mass distribution descriptors in modelling of sorption properties","authors":"Akyl S. Tulegenov, B. Kenzhaliev, Zhansaya Qyzyrbek-qyzy Seilkhanova, Madina Muratbekovna Sartayeva","doi":"10.15328/CB968","DOIUrl":null,"url":null,"abstract":"1Al-Farabi Kazakh National University, Almaty, Kazakhstan 2Kazakh-British Technical University, Almaty, Kazakhstan *E-mail: akyl.s.tulegenov@gmail.com The objective of present work is to construct structure-property models for the prediction of applied thermochemical properties of polyatomic molecules based on the mass distribution descriptors. The performance of the model was assessed based on the values of coefficients of determination and root mean square deviations. The results were compared with existing literature values, and it was observed that the mass distribution descriptors not relying on quantum-chemical information exhibit a similar performance compared to quantum-chemical QSPR models and can at least form the reliable foundation for the construction of the quantitative structure-property models. Conclusions were made about the possible applicability of the model.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":"1 1","pages":"16-23"},"PeriodicalIF":0.3000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Bulletin of Kazakh National University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15328/CB968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

1Al-Farabi Kazakh National University, Almaty, Kazakhstan 2Kazakh-British Technical University, Almaty, Kazakhstan *E-mail: akyl.s.tulegenov@gmail.com The objective of present work is to construct structure-property models for the prediction of applied thermochemical properties of polyatomic molecules based on the mass distribution descriptors. The performance of the model was assessed based on the values of coefficients of determination and root mean square deviations. The results were compared with existing literature values, and it was observed that the mass distribution descriptors not relying on quantum-chemical information exhibit a similar performance compared to quantum-chemical QSPR models and can at least form the reliable foundation for the construction of the quantitative structure-property models. Conclusions were made about the possible applicability of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吸附特性建模中的质量分布描述符
1Al Farabi哈萨克斯坦国立大学,哈萨克斯坦阿拉木图;2Kazakh英国技术大学,哈萨克斯坦哈萨克斯坦阿拉木图*电子邮件:akyl.s.tulegenov@gmail.com本工作的目的是基于质量分布描述符构建结构-性质模型,用于预测多原子分子的应用热化学性质。根据决定系数和均方根偏差的值来评估模型的性能。将结果与现有文献值进行了比较,发现不依赖于量子化学信息的质量分布描述符与量子化学QSPR模型相比表现出相似的性能,至少可以为定量结构-性质模型的构建奠定可靠的基础。对该模型的可能适用性进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
10 weeks
期刊最新文献
Кинетическая модель фотокаталитического окисления красителя (Orange II) супероксид радикалами Phase relations in the SrO – GdO1.5 – FeO1.5 system Obtaining synthetic zeolite and nanocomposite from rice husk to remove mercury ions from water Polymer systems for oral delivery of insulin Use of polyethylene consumables in neutron activation analysis for short-lived radionuclides
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1