{"title":"Nonthermal Equilibrium Process of Charge Carrier Extraction in Metal/Insulator/Organic Semiconductor/Metal (MIOM) Junction","authors":"Hiroyuki Tajima, Takeshi Oda, Tomofumi Kadoya","doi":"10.3390/magnetochemistry9070180","DOIUrl":null,"url":null,"abstract":"This paper presents the concept and experimental evidence for the nonthermal equilibrium (NTE) process of charge carrier extraction in metal/insulator/organic semiconductor/metal (MIOM) capacitors. These capacitors are structurally similar to metal/insulator/semiconductor/(metal) (MIS) capacitors found in standard semiconductor textbooks. The difference between the two capacitors is that the (organic) semiconductor/metal contacts in the MIOM capacitors are of the Schottky type, whereas the contacts in the MIS capacitors are of the ohmic type. Moreover, the mobilities of most organic semiconductors are significantly lower than those of inorganic semiconductors. As the MIOM structure is identical to the electrode portion of an organic field-effect transistor (OFET) with top-contact and bottom-gate electrodes, the hysteretic behavior of the OFET transfer characteristics can be deduced from the NTE phenomenon observed in MIOM capacitors.","PeriodicalId":18194,"journal":{"name":"Magnetochemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/magnetochemistry9070180","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the concept and experimental evidence for the nonthermal equilibrium (NTE) process of charge carrier extraction in metal/insulator/organic semiconductor/metal (MIOM) capacitors. These capacitors are structurally similar to metal/insulator/semiconductor/(metal) (MIS) capacitors found in standard semiconductor textbooks. The difference between the two capacitors is that the (organic) semiconductor/metal contacts in the MIOM capacitors are of the Schottky type, whereas the contacts in the MIS capacitors are of the ohmic type. Moreover, the mobilities of most organic semiconductors are significantly lower than those of inorganic semiconductors. As the MIOM structure is identical to the electrode portion of an organic field-effect transistor (OFET) with top-contact and bottom-gate electrodes, the hysteretic behavior of the OFET transfer characteristics can be deduced from the NTE phenomenon observed in MIOM capacitors.
期刊介绍:
Magnetochemistry (ISSN 2312-7481) is a unique international, scientific open access journal on molecular magnetism, the relationship between chemical structure and magnetism and magnetic materials. Magnetochemistry publishes research articles, short communications and reviews. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.