{"title":"Significance of selective crystal entrainment and differential crystal-melt separation in petrogenesis of granites from the Tongbai orogen","authors":"Qiang-Qiang Zhang, Xiao-Ying Gao, Yong-Fei Zheng","doi":"10.1111/jmg.12691","DOIUrl":null,"url":null,"abstract":"<p>Partial melting has been shown to be an important mechanism for intracrustal differentiation and granite petrogenesis. However, a series of compositional differences between granitic melt from experiments and natural granites indicate that the processes of crustal differentiation are complex. To shed light on factors that control the processes of crustal differentiation, and then the compositions of granitic magma, a combined study of petrology and geochemistry was carried out for granites (in the forms of granitic veins and parautochthonous granite) from a granulite terrane in the Tongbai orogen, China. These granites are characterized by high SiO<sub>2</sub> (>72 wt%) and low FeO and MgO (<4 wt%) with low Na<sub>2</sub>O/K<sub>2</sub>O ratios (<0.7). Minerals in these granites show variable microstructures and compositions. Phase equilibrium modelling using P–T pseudosections shows that neither anatectic melts nor fractionated melts match the compositions of the target granites, challenging the conventional paradigm that granites are the crystallized product of pure granitic melts. Based on the microstructural features of minerals in the granites, and a comparison of their compositions with crystallized minerals from anatectic melts and minerals in granulites, the minerals in these granitoids are considered to have three origins. The first is entrained garnets, which show comparable compositions with those in host granulites. The second is early crystallized mineral from melts, which include large plagioclase and K-feldspar (with high Ca contents) crystals as well as a part of biotite whose compositions can be reproduced by crystallization of the anatectic melts. The compositions of other minerals such as small grained plagioclase, K-feldspar and anorthoclase in the granites with low Ca contents are not well reconstructed, so they are considered as the third origin of crystallized products of fractionated melts. The results of mass balance calculation show that the compositions of these granites can be produced by mixing between different proportions of crystallized minerals and fractionated melts with variable amounts of entrained minerals. However, the calculated modal proportions of different crystallized minerals (plagioclase, K-feldspar, biotite and quartz) in the granites are significantly different from those predicted by melt crystallization modelling. Specifically, some rocks have lower modes of biotite and plagioclase, whereas others show lower K-feldspar modes than those produced by melt crystallization. This indicates that the crystallized minerals would be differentially separated from the primary magmas to form the evolved magmas that produce these granites. Therefore, the crystal entrainment and differential melt-crystal separation make important contributions to the composition of the target granites. Compared with leucogranites worldwide, the target granites show comparable compositions. As such, the leucogranites may form through the crystal fractionation of primary granitic magmas at different extents in addition to variable degrees of partial melting.</p>","PeriodicalId":16472,"journal":{"name":"Journal of Metamorphic Geology","volume":"41 1","pages":"143-179"},"PeriodicalIF":3.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Metamorphic Geology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jmg.12691","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Partial melting has been shown to be an important mechanism for intracrustal differentiation and granite petrogenesis. However, a series of compositional differences between granitic melt from experiments and natural granites indicate that the processes of crustal differentiation are complex. To shed light on factors that control the processes of crustal differentiation, and then the compositions of granitic magma, a combined study of petrology and geochemistry was carried out for granites (in the forms of granitic veins and parautochthonous granite) from a granulite terrane in the Tongbai orogen, China. These granites are characterized by high SiO2 (>72 wt%) and low FeO and MgO (<4 wt%) with low Na2O/K2O ratios (<0.7). Minerals in these granites show variable microstructures and compositions. Phase equilibrium modelling using P–T pseudosections shows that neither anatectic melts nor fractionated melts match the compositions of the target granites, challenging the conventional paradigm that granites are the crystallized product of pure granitic melts. Based on the microstructural features of minerals in the granites, and a comparison of their compositions with crystallized minerals from anatectic melts and minerals in granulites, the minerals in these granitoids are considered to have three origins. The first is entrained garnets, which show comparable compositions with those in host granulites. The second is early crystallized mineral from melts, which include large plagioclase and K-feldspar (with high Ca contents) crystals as well as a part of biotite whose compositions can be reproduced by crystallization of the anatectic melts. The compositions of other minerals such as small grained plagioclase, K-feldspar and anorthoclase in the granites with low Ca contents are not well reconstructed, so they are considered as the third origin of crystallized products of fractionated melts. The results of mass balance calculation show that the compositions of these granites can be produced by mixing between different proportions of crystallized minerals and fractionated melts with variable amounts of entrained minerals. However, the calculated modal proportions of different crystallized minerals (plagioclase, K-feldspar, biotite and quartz) in the granites are significantly different from those predicted by melt crystallization modelling. Specifically, some rocks have lower modes of biotite and plagioclase, whereas others show lower K-feldspar modes than those produced by melt crystallization. This indicates that the crystallized minerals would be differentially separated from the primary magmas to form the evolved magmas that produce these granites. Therefore, the crystal entrainment and differential melt-crystal separation make important contributions to the composition of the target granites. Compared with leucogranites worldwide, the target granites show comparable compositions. As such, the leucogranites may form through the crystal fractionation of primary granitic magmas at different extents in addition to variable degrees of partial melting.
期刊介绍:
The journal, which is published nine times a year, encompasses the entire range of metamorphic studies, from the scale of the individual crystal to that of lithospheric plates, including regional studies of metamorphic terranes, modelling of metamorphic processes, microstructural and deformation studies in relation to metamorphism, geochronology and geochemistry in metamorphic systems, the experimental study of metamorphic reactions, properties of metamorphic minerals and rocks and the economic aspects of metamorphic terranes.