Smoothed Variable Sample-Size Accelerated Proximal Methods for Nonsmooth Stochastic Convex Programs

Q1 Mathematics Stochastic Systems Pub Date : 2018-03-02 DOI:10.1287/stsy.2022.0095
A. Jalilzadeh, U. Shanbhag, J. Blanchet, P. Glynn
{"title":"Smoothed Variable Sample-Size Accelerated Proximal Methods for Nonsmooth Stochastic Convex Programs","authors":"A. Jalilzadeh, U. Shanbhag, J. Blanchet, P. Glynn","doi":"10.1287/stsy.2022.0095","DOIUrl":null,"url":null,"abstract":"We consider the unconstrained minimization of the function F, where F = f + g, f is an expectation-valued nonsmooth convex or strongly convex function, and g is a closed, convex, and proper function. (I) Strongly convex f. When f is -strongly convex in x, traditional stochastic subgradient schemes (SSG) often display poor behavior, arising in part from noisy subgradients and diminishing steplengths. Instead, we apply a variable sample-size accelerated proximal scheme (VS-APM) on F, the Moreau envelope of F; we term such a scheme as (mVS-APM) and in contrast with (SSG) schemes, (mVS-APM) utilizes constant steplengths and increasingly exact gradients. We consider two settings. (a) Bounded domains. In this setting, (mVS-APM) displays linear convergence in inexact gradient steps, each of which requires utilizing an inner (prox-SSG) scheme. Specically, (mVS-APM) achieves an optimal oracle complexity in prox-SSG steps of [Formula: see text] with an iteration complexity of [Formula: see text] in inexact (outer) gradients of F to achieve an -accurate solution in mean-squared error, computed via an increasing number of inner (stochastic) subgradient steps; (b) Unbounded domains. In this regime, under an assumption of state-dependent bounds on subgradients, an unaccelerated variant (mVS-APM) is linearly convergent where increasingly exact gradients ∇xF(x) are approximated with increasing accuracy via (SSG) schemes. Notably, (mVS-APM) also displays an optimal oracle complexity of [Formula: see text]; (II) Convex f. When f is merely convex but smoothable, by suitable choices of the smoothing, steplength, and batch-size sequences, smoothed (VS-APM) (or sVS-APM) achieves an optimal oracle complexity of [Formula: see text] to obtain an -optimal solution. Our results can be specialized to two important cases: (a) Smooth f. Since smoothing is no longer required, we observe that (VS-APM) admits the optimal rate and oracle complexity, matching prior ndings; (b) Deterministic nonsmooth f. In the nonsmooth deterministic regime, (sVS-APM) reduces to a smoothed accelerated proximal method (s-APM) that is both asymptotically convergent and optimal in that it displays a complexity of [Formula: see text], matching the bound provided by Nesterov in 2005 for producing -optimal solutions. Finally, (sVS-APM) and (VS-APM) produce sequences that converge almost surely to a solution of the original problem.","PeriodicalId":36337,"journal":{"name":"Stochastic Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/stsy.2022.0095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

We consider the unconstrained minimization of the function F, where F = f + g, f is an expectation-valued nonsmooth convex or strongly convex function, and g is a closed, convex, and proper function. (I) Strongly convex f. When f is -strongly convex in x, traditional stochastic subgradient schemes (SSG) often display poor behavior, arising in part from noisy subgradients and diminishing steplengths. Instead, we apply a variable sample-size accelerated proximal scheme (VS-APM) on F, the Moreau envelope of F; we term such a scheme as (mVS-APM) and in contrast with (SSG) schemes, (mVS-APM) utilizes constant steplengths and increasingly exact gradients. We consider two settings. (a) Bounded domains. In this setting, (mVS-APM) displays linear convergence in inexact gradient steps, each of which requires utilizing an inner (prox-SSG) scheme. Specically, (mVS-APM) achieves an optimal oracle complexity in prox-SSG steps of [Formula: see text] with an iteration complexity of [Formula: see text] in inexact (outer) gradients of F to achieve an -accurate solution in mean-squared error, computed via an increasing number of inner (stochastic) subgradient steps; (b) Unbounded domains. In this regime, under an assumption of state-dependent bounds on subgradients, an unaccelerated variant (mVS-APM) is linearly convergent where increasingly exact gradients ∇xF(x) are approximated with increasing accuracy via (SSG) schemes. Notably, (mVS-APM) also displays an optimal oracle complexity of [Formula: see text]; (II) Convex f. When f is merely convex but smoothable, by suitable choices of the smoothing, steplength, and batch-size sequences, smoothed (VS-APM) (or sVS-APM) achieves an optimal oracle complexity of [Formula: see text] to obtain an -optimal solution. Our results can be specialized to two important cases: (a) Smooth f. Since smoothing is no longer required, we observe that (VS-APM) admits the optimal rate and oracle complexity, matching prior ndings; (b) Deterministic nonsmooth f. In the nonsmooth deterministic regime, (sVS-APM) reduces to a smoothed accelerated proximal method (s-APM) that is both asymptotically convergent and optimal in that it displays a complexity of [Formula: see text], matching the bound provided by Nesterov in 2005 for producing -optimal solutions. Finally, (sVS-APM) and (VS-APM) produce sequences that converge almost surely to a solution of the original problem.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非光滑随机凸规划的光滑变样本量加速逼近方法
考虑函数F的无约束极小化问题,其中F = F + g, F是一个期望值非光滑凸函数或强凸函数,g是一个闭凸固有函数。(I)强凸f。当f在x中为-强凸时,传统的随机亚梯度方案(SSG)通常表现出较差的行为,部分原因是由于噪声的亚梯度和递减的步长。相反,我们在F (F的莫罗包络)上应用了变样本量加速近端方案(VS-APM);我们将这种方案称为(mVS-APM),与(SSG)方案相比,(mVS-APM)利用恒定的步长和越来越精确的梯度。我们考虑两种情况。(a)有界域。在这种情况下,(mVS-APM)在不精确的梯度步骤中显示线性收敛,每个步骤都需要使用内部(prox-SSG)方案。具体来说,(mVS-APM)在[公式:见文]的prox-SSG步骤中实现了最优的oracle复杂度,在F的不精确(外部)梯度中实现了[公式:见文]的迭代复杂度,从而通过增加内部(随机)子梯度步骤的数量来实现均方误差的精确解;(b)无界域。在这种情况下,在子梯度上的状态依赖边界假设下,非加速变量(mVS-APM)是线性收敛的,其中越来越精确的梯度∇xF(x)通过(SSG)格式以越来越高的精度逼近。值得注意的是,(mVS-APM)也显示了最优的oracle复杂性[公式:见文本];(II)凸f。当f仅为凸但平滑时,通过对平滑序列、步长序列和批大小序列的适当选择,smooththed (VS-APM)(或sVS-APM)达到最优的oracle复杂度为[公式:见文],从而得到一个-最优解。我们的结果可以专门用于两个重要的情况:(a)平滑f.由于不再需要平滑,我们观察到(VS-APM)承认最优速率和oracle复杂性,匹配先验结果;f.在非光滑确定性区域,(sVS-APM)简化为光滑加速近端方法(s-APM),它是渐近收敛和最优的,因为它显示出[公式:见文]的复杂性,匹配Nesterov在2005年提供的产生-最优解的界。最后,(sVS-APM)和(VS-APM)产生的序列几乎肯定收敛于原问题的一个解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stochastic Systems
Stochastic Systems Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
3.70
自引率
0.00%
发文量
18
期刊最新文献
Sharp Waiting-Time Bounds for Multiserver Jobs Asymptotic Optimality of Switched Control Policies in a Simple Parallel Server System Under an Extended Heavy Traffic Condition Distributionally Robust Observable Strategic Queues The BAR Approach for Multiclass Queueing Networks with SBP Service Policies Ergodic Control of Bipartite Matching Queues with Class Change and Matching Failure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1