{"title":"A mixed-integer exponential cone programming formulation for feature subset selection in logistic regression","authors":"Sahand Asgharieh Ahari , Burak Kocuk","doi":"10.1016/j.ejco.2023.100069","DOIUrl":null,"url":null,"abstract":"<div><p>Logistic regression is one of the widely-used classification tools to construct prediction models. For datasets with a large number of features, feature subset selection methods are considered to obtain accurate and interpretable prediction models, in which irrelevant and redundant features are removed. In this paper, we address the problem of <em>feature subset selection in logistic regression</em> using modern optimization techniques. To this end, we formulate this problem as a mixed-integer exponential cone program (MIEXP). To the best of our knowledge, this is the first time both nonlinear and discrete aspects of the underlying problem are fully considered within an exact optimization framework. We derive different versions of the MIEXP model by the means of regularization and goodness of fit measures including Akaike Information Criterion and Bayesian Information Criterion. Finally, we solve our MIEXP models using the solver <em>MOSEK</em> and evaluate the performance of our different versions over a set of toy examples and benchmark datasets. The results show that our approach is quite successful in obtaining accurate and interpretable prediction models compared to other methods from the literature.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"11 ","pages":"Article 100069"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440623000138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Logistic regression is one of the widely-used classification tools to construct prediction models. For datasets with a large number of features, feature subset selection methods are considered to obtain accurate and interpretable prediction models, in which irrelevant and redundant features are removed. In this paper, we address the problem of feature subset selection in logistic regression using modern optimization techniques. To this end, we formulate this problem as a mixed-integer exponential cone program (MIEXP). To the best of our knowledge, this is the first time both nonlinear and discrete aspects of the underlying problem are fully considered within an exact optimization framework. We derive different versions of the MIEXP model by the means of regularization and goodness of fit measures including Akaike Information Criterion and Bayesian Information Criterion. Finally, we solve our MIEXP models using the solver MOSEK and evaluate the performance of our different versions over a set of toy examples and benchmark datasets. The results show that our approach is quite successful in obtaining accurate and interpretable prediction models compared to other methods from the literature.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.