{"title":"Antitranspirant treatment on bean plants to counteract cold stress","authors":"R. Bulgari, P. Turconi, D. Colombo, A. Ferrante","doi":"10.26353/J.ITAHORT/2020.2.5565","DOIUrl":null,"url":null,"abstract":": The aim of the work was to test the efficacy of the antitranspirant Scudotherm® in preventing cold damages on Phaseolus vulgaris L. Two tests were conducted: the first between June-July 2018, and the second between May-June 2019. Plants were grown in a greenhouse, in plastic pots (10 pots/treatment), on a peaty substrate. Treatments were carried out on three-week-old plants, by foliar application 24 hours before the stress. The experimental design included treatments with Scudotherm® at 2% compared to an untreated and unstressed control, and to an untreated but stressed control (con-trols were sprayed with tap water). The cold stress was induced by placing the plants at 3-4 °C, for 48 hours. Both in vivo and destructive analyzes were performed to evaluate the health status of plants, immediately after stress and after a one-week recovery period. The analyzes were performed on three biological replications. No significant effect of the treatments was observed on chlorophylls in vivo , chlorophyll a fluorescence parameters, secondary metabolites (anthocyanins and phenolic index), and lipid peroxidation. Significant variations were found in the metabolism of the sugars. Scudotherm® allowed maintaining the sucrose concentration similar to control and lower than stressed plants. During the first year, a similar behavior was also recorded for total sugars. These results suggested that Scudotherm® is able to mitigate some of the negative consequences of low temperatures, acting as a physical barrier on leaves, with an indirect physiological and biochemical effect.","PeriodicalId":36731,"journal":{"name":"Italus Hortus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italus Hortus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26353/J.ITAHORT/2020.2.5565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1
Abstract
: The aim of the work was to test the efficacy of the antitranspirant Scudotherm® in preventing cold damages on Phaseolus vulgaris L. Two tests were conducted: the first between June-July 2018, and the second between May-June 2019. Plants were grown in a greenhouse, in plastic pots (10 pots/treatment), on a peaty substrate. Treatments were carried out on three-week-old plants, by foliar application 24 hours before the stress. The experimental design included treatments with Scudotherm® at 2% compared to an untreated and unstressed control, and to an untreated but stressed control (con-trols were sprayed with tap water). The cold stress was induced by placing the plants at 3-4 °C, for 48 hours. Both in vivo and destructive analyzes were performed to evaluate the health status of plants, immediately after stress and after a one-week recovery period. The analyzes were performed on three biological replications. No significant effect of the treatments was observed on chlorophylls in vivo , chlorophyll a fluorescence parameters, secondary metabolites (anthocyanins and phenolic index), and lipid peroxidation. Significant variations were found in the metabolism of the sugars. Scudotherm® allowed maintaining the sucrose concentration similar to control and lower than stressed plants. During the first year, a similar behavior was also recorded for total sugars. These results suggested that Scudotherm® is able to mitigate some of the negative consequences of low temperatures, acting as a physical barrier on leaves, with an indirect physiological and biochemical effect.