{"title":"An improved Wilson equation for phase equilibrium K values estimation","authors":"W. Monnery","doi":"10.1515/cppm-2021-0009","DOIUrl":null,"url":null,"abstract":"Abstract Phase equilibrium K values are either estimated with empirical correlations or rigorously calculated based on fugacity values determined from an equation of state. There have been several empirical analytical equations such as Raoult’s Law, the Hoffman Equations (Hoffman A, Crump J, Hocott C. Equilibrium constants for a gas condensate system. J Petrol Technol 1953;5:1–10) and their modifications and the well-known Wilson Equation (Wilson G. A modified Redlich–Kwong equation of state applicable to general physical data calculations. In: AIChE National Meeting Paper15C, May 4–7, Cleveland, OH; 1969). along with several modifications. This work presents a new modification of the Wilson Equation for estimating phase equilibrium K values, predominantly for light hydrocarbon mixtures. The modification is based on correlating a subset of a database of K values, established from convergence pressure data. Results show the method to accurately correlate and predict the K value data, within 10% on average. Moreover, the predicted K factors provide remarkable results for such a simple model when used in a variety of phase equilibrium calculations. The results also show that the new model compares favorably with existing empirical analytical methods. Such a model would provide excellent initial estimates for rigorous thermodynamic calculations.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"365 - 377"},"PeriodicalIF":1.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2021-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Phase equilibrium K values are either estimated with empirical correlations or rigorously calculated based on fugacity values determined from an equation of state. There have been several empirical analytical equations such as Raoult’s Law, the Hoffman Equations (Hoffman A, Crump J, Hocott C. Equilibrium constants for a gas condensate system. J Petrol Technol 1953;5:1–10) and their modifications and the well-known Wilson Equation (Wilson G. A modified Redlich–Kwong equation of state applicable to general physical data calculations. In: AIChE National Meeting Paper15C, May 4–7, Cleveland, OH; 1969). along with several modifications. This work presents a new modification of the Wilson Equation for estimating phase equilibrium K values, predominantly for light hydrocarbon mixtures. The modification is based on correlating a subset of a database of K values, established from convergence pressure data. Results show the method to accurately correlate and predict the K value data, within 10% on average. Moreover, the predicted K factors provide remarkable results for such a simple model when used in a variety of phase equilibrium calculations. The results also show that the new model compares favorably with existing empirical analytical methods. Such a model would provide excellent initial estimates for rigorous thermodynamic calculations.
期刊介绍:
Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.