{"title":"Perceptual Impact on Localization Quality Evaluations of Common Pre-Processing for Non-Individual Head-Related Transfer Functions","authors":"Areti Andreopoulou, B. Katz","doi":"10.17743/jaes.2022.0008","DOIUrl":null,"url":null,"abstract":"This article investigates the impact of two commonly used Head-Related Transfer Function (HRTF) processing/modeling methods on the perceived spatial accuracy of binaural data by monitoring changes in user ratings of non-individualized HRTFs. The evaluated techniques are minimum-phase approximation and Infinite-Impulse Response (IIR) modeling. The study is based on the hypothesis that user-assessments should remain roughly unchanged, as long as the range of signal variations between processed and unprocessed (reference) HRTFs lies within ranges previously reported as perceptually insignificant. Objective assessments of the degree of spectral variations between reference and processed data, computed using the Spectral Distortion metric, showed no evident perceptually relevant variations in the minimum-phase data and spectral differences marginally exceeding the established thresholds for the IIR data, implying perceptual equivalence of spatial impression in the tested corpus. Nevertheless analysis of user responses in the perceptual study strongly indicated that variations introduced in the data by the tested methods of HRTF processing can lead to inversions in quality assessment, resulting in the perceptual rejection of HRTFs that were previously characterized in the ratings as the “most appropriate” or alternatively in the preference of datasets that were previously dismissed as “unfit.” The effect appears more apparent for IIR processing and is equally evident across the evaluated horizontal and median planes.","PeriodicalId":50008,"journal":{"name":"Journal of the Audio Engineering Society","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Audio Engineering Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17743/jaes.2022.0008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 3
Abstract
This article investigates the impact of two commonly used Head-Related Transfer Function (HRTF) processing/modeling methods on the perceived spatial accuracy of binaural data by monitoring changes in user ratings of non-individualized HRTFs. The evaluated techniques are minimum-phase approximation and Infinite-Impulse Response (IIR) modeling. The study is based on the hypothesis that user-assessments should remain roughly unchanged, as long as the range of signal variations between processed and unprocessed (reference) HRTFs lies within ranges previously reported as perceptually insignificant. Objective assessments of the degree of spectral variations between reference and processed data, computed using the Spectral Distortion metric, showed no evident perceptually relevant variations in the minimum-phase data and spectral differences marginally exceeding the established thresholds for the IIR data, implying perceptual equivalence of spatial impression in the tested corpus. Nevertheless analysis of user responses in the perceptual study strongly indicated that variations introduced in the data by the tested methods of HRTF processing can lead to inversions in quality assessment, resulting in the perceptual rejection of HRTFs that were previously characterized in the ratings as the “most appropriate” or alternatively in the preference of datasets that were previously dismissed as “unfit.” The effect appears more apparent for IIR processing and is equally evident across the evaluated horizontal and median planes.
期刊介绍:
The Journal of the Audio Engineering Society — the official publication of the AES — is the only peer-reviewed journal devoted exclusively to audio technology. Published 10 times each year, it is available to all AES members and subscribers.
The Journal contains state-of-the-art technical papers and engineering reports; feature articles covering timely topics; pre and post reports of AES conventions and other society activities; news from AES sections around the world; Standards and Education Committee work; membership news, patents, new products, and newsworthy developments in the field of audio.