Single event upset reinforcement technology of DICE flip-flop based on layout design

Q3 Engineering 西北工业大学学报 Pub Date : 2022-12-01 DOI:10.1051/jnwpu/20224061305
Xiaoling Lai, Jian Zhang, Ting Ju, Qi Zhu, Yangming Guo
{"title":"Single event upset reinforcement technology of DICE flip-flop based on layout design","authors":"Xiaoling Lai, Jian Zhang, Ting Ju, Qi Zhu, Yangming Guo","doi":"10.1051/jnwpu/20224061305","DOIUrl":null,"url":null,"abstract":"D flip-flop is the basis of timing logic circuit, and SEMU phenomenon tends to be serious with the integrated circuit process size shrinking to nanometer scale. The anti-SEU ability based on DICE structure for D flip-flop cannot meet the requirements of aerospace engineering. Based on the SEU reinforcement technology of D flip-flop under nano-technology and the SEU mechanism of DICE structure, a layout-level anti-SEU flip-flop design method based on DICE circuit structure is proposed considering the circuit performance, area, power consumption and other resource costs. And then a D flip-flop with SEU resistance is designed by commercial 65 nm process, and the designed flip-flop area is 1.8 times that of commercial structure flip-flop. The function and and radiation simulation results indicate that the establishment time and transmission delay of the flip-flop are equivalent to those of the commercial one, and no SEU occurs under the Ge ion bombardment with the LET threshold of approximately 37 MeV·cm2/mg. The performance of the flip-flop circuit and the ability to resist single particle soft error are excellent. In the anti-radiation ASIC design, the area, wiring resources and timing overhead caused by the reinforcement of the D flip-flop circuit are greatly saved.","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20224061305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

D flip-flop is the basis of timing logic circuit, and SEMU phenomenon tends to be serious with the integrated circuit process size shrinking to nanometer scale. The anti-SEU ability based on DICE structure for D flip-flop cannot meet the requirements of aerospace engineering. Based on the SEU reinforcement technology of D flip-flop under nano-technology and the SEU mechanism of DICE structure, a layout-level anti-SEU flip-flop design method based on DICE circuit structure is proposed considering the circuit performance, area, power consumption and other resource costs. And then a D flip-flop with SEU resistance is designed by commercial 65 nm process, and the designed flip-flop area is 1.8 times that of commercial structure flip-flop. The function and and radiation simulation results indicate that the establishment time and transmission delay of the flip-flop are equivalent to those of the commercial one, and no SEU occurs under the Ge ion bombardment with the LET threshold of approximately 37 MeV·cm2/mg. The performance of the flip-flop circuit and the ability to resist single particle soft error are excellent. In the anti-radiation ASIC design, the area, wiring resources and timing overhead caused by the reinforcement of the D flip-flop circuit are greatly saved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于布局设计的DICE触发器单事件破坏加固技术
D触发器是时序逻辑电路的基础,随着集成电路工艺尺寸向纳米级缩小,SEMU现象趋于严重。基于DICE结构的D触发器的抗seu能力不能满足航空航天工程的要求。基于纳米技术下D触发器的SEU增强技术和DICE结构的SEU机制,综合考虑电路性能、面积、功耗等资源成本,提出了一种基于DICE电路结构的布图级反SEU触发器设计方法。然后采用商用65nm工艺设计了具有SEU电阻的D型触发器,设计的触发器面积是商用结构触发器的1.8倍。函数和辐射模拟结果表明,该触发器的建立时间和传输延迟与商用触发器相当,并且在LET阈值约为37 MeV·cm2/mg的Ge离子轰击下没有发生SEU。该触发器电路的性能和抗单粒子软误差的能力都很好。在抗辐射ASIC设计中,大大节省了D触发器电路加固所带来的面积、布线资源和时序开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
期刊最新文献
Research on the safe separation corridor of the combined aircraft and its generation method Cracking mechanism analysis and experimental verification of encapsulated module under high low temperature cycle considering residual stress AFDX network equipment fault diagnosis technology MUSIC algorithm based on eigenvalue clustering Target recognition algorithm based on HRRP time-spectrogram feature and multi-scale asymmetric convolutional neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1