Heat storage efficiency, ground surface uplift and thermo-hydro-mechanical phenomena for high-temperature aquifer thermal energy storage

IF 2.9 2区 地球科学 Q3 ENERGY & FUELS Geothermal Energy Pub Date : 2022-10-06 DOI:10.1186/s40517-022-00233-3
Rubén Vidal, Sebastià Olivella, Maarten W. Saaltink, François Diaz-Maurin
{"title":"Heat storage efficiency, ground surface uplift and thermo-hydro-mechanical phenomena for high-temperature aquifer thermal energy storage","authors":"Rubén Vidal,&nbsp;Sebastià Olivella,&nbsp;Maarten W. Saaltink,&nbsp;François Diaz-Maurin","doi":"10.1186/s40517-022-00233-3","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature aquifer thermal energy storage (HT-ATES) systems can help in balancing energy demand and supply for better use of infrastructures and resources. The aim of these systems is to store high amounts of heat to be reused later. HT-ATES requires addressing problems such as variations of the properties of the aquifer, thermal losses and the uplift of the surface. Coupled thermo-hydro-mechanical (THM) modelling is a good tool to analyse the viability and cost effectiveness of HT-ATES systems and to understand the interaction of processes, such as heat flux, groundwater flow and ground deformation. The main problem of this modelling is its high computational cost. We propose a dimensional and numerical analysis of the thermo-hydro-mechanical behaviour of a pilot HT-ATES. The results of this study have provided information about the dominant thermo-hydraulic fluxes, evolution of the energy efficiency of the system and the role of the hydraulic and thermal loads generated by the injection and extraction of hot water.</p></div>","PeriodicalId":48643,"journal":{"name":"Geothermal Energy","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geothermal-energy-journal.springeropen.com/counter/pdf/10.1186/s40517-022-00233-3","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermal Energy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s40517-022-00233-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2

Abstract

High-temperature aquifer thermal energy storage (HT-ATES) systems can help in balancing energy demand and supply for better use of infrastructures and resources. The aim of these systems is to store high amounts of heat to be reused later. HT-ATES requires addressing problems such as variations of the properties of the aquifer, thermal losses and the uplift of the surface. Coupled thermo-hydro-mechanical (THM) modelling is a good tool to analyse the viability and cost effectiveness of HT-ATES systems and to understand the interaction of processes, such as heat flux, groundwater flow and ground deformation. The main problem of this modelling is its high computational cost. We propose a dimensional and numerical analysis of the thermo-hydro-mechanical behaviour of a pilot HT-ATES. The results of this study have provided information about the dominant thermo-hydraulic fluxes, evolution of the energy efficiency of the system and the role of the hydraulic and thermal loads generated by the injection and extraction of hot water.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高温含水层储能的储热效率、地表抬升和热力-水力-力学现象
高温含水层热能储存(HT-ATES)系统可以帮助平衡能源需求和供应,以更好地利用基础设施和资源。这些系统的目的是储存大量的热量供以后再利用。HT-ATES需要解决诸如含水层性质变化、热损失和地表隆起等问题。热-水-机械耦合(THM)建模是分析高温-低温加热系统可行性和成本效益以及了解热通量、地下水流动和地面变形等过程相互作用的良好工具。这种建模的主要问题是计算成本高。我们提出了一个尺寸和数值分析的热-水-力学行为的试点HT-ATES。研究结果揭示了系统的主要热液通量、系统能量效率的演变以及热水注入和抽提产生的水力和热负荷的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geothermal Energy
Geothermal Energy Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
5.90
自引率
7.10%
发文量
25
审稿时长
8 weeks
期刊介绍: Geothermal Energy is a peer-reviewed fully open access journal published under the SpringerOpen brand. It focuses on fundamental and applied research needed to deploy technologies for developing and integrating geothermal energy as one key element in the future energy portfolio. Contributions include geological, geophysical, and geochemical studies; exploration of geothermal fields; reservoir characterization and modeling; development of productivity-enhancing methods; and approaches to achieve robust and economic plant operation. Geothermal Energy serves to examine the interaction of individual system components while taking the whole process into account, from the development of the reservoir to the economic provision of geothermal energy.
期刊最新文献
Feasibility of coaxial deep borehole heat exchangers in southern California Controls of low injectivity caused by interaction of reservoir and clogging processes in a sedimentary geothermal aquifer (Mezőberény, Hungary) Density of pure and mixed NaCl and CaCl2 aqueous solutions at 293 K to 353 K and 0.1 MPa: an integrated comparison of analytical and numerical data Modeling unobserved geothermal structures using a physics-informed neural network with transfer learning of prior knowledge Methods of grout quality measurement in borehole exchangers for heat pumps and their rehabilitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1