ASSESSMENT OF RIVER SEDIMENT QUALITY ACCORDING TO THE EU WATER FRAMEWORK DIRECTIVE IN LOWLAND FLUVIAL CONDITIONS. A CASE STUDY IN THE DRAVA RIVER AREA, DANUBE RIVER BASIN

IF 0.9 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Carpathian Journal of Earth and Environmental Sciences Pub Date : 2022-08-31 DOI:10.26471/cjees/2022/017/235
A. Šorša, Teja Ceru, Z. Kovács, G. Jordan, Katalin Mária Dudás, P. Szabó
{"title":"ASSESSMENT OF RIVER SEDIMENT QUALITY ACCORDING TO THE EU WATER FRAMEWORK DIRECTIVE IN LOWLAND FLUVIAL CONDITIONS. A CASE STUDY IN THE DRAVA RIVER AREA, DANUBE RIVER BASIN","authors":"A. Šorša, Teja Ceru, Z. Kovács, G. Jordan, Katalin Mária Dudás, P. Szabó","doi":"10.26471/cjees/2022/017/235","DOIUrl":null,"url":null,"abstract":"The EU Water Framework Directive requires the monitoring and evaluation of surface water sediment quality based on the assessment of risk posed by contamination on the biotic receptors. Fluvial sediments are important receptors of hazardous substances (HSs) pollution from the upstream catchment areas in the Danube River Basin (DRB). For the development of systematic sediment quality monitoring and evaluation, the Drava River region on the border of Hungary and Croatia was selected as a test area representative of lowland hydromorphological conditions. Overbank (floodplain) sediments and river bottom sediments (stream sediments) were sampled at two depths at 9 locations in the test area. Eight heavy metal(oid)s were analyzed As, Cd, Cr, Cu, Hg, Ni, and Zn as hazardous substances. The sediment quality assessment was carried out according to the 2013/39/EU Directive and EU Water Framework Directive standards. Most of the analysed HS concentrations in river bottom sediment and overbank (floodplain) sediments fall within the limits of environmental quality standards (EQS). Results show that there is no significant differences in metal(oid) HS concentrations among the various sediment types and between shallow (0-5cm) and deeper (stream sediment: 5-10cm; floodplain sediment: 40-50cm) sediment which suggests that the large lowland Drava River fluvial system is an extensive single fluvial system with homogeneous distribution of sediments and the associated contaminants. Specifically, the studied sediments in the tributaries of the Drava River do not seem to be contaminated with metal(oid) hazardous substances but at certain sites concentrations are elevated above the environmental limit values, especially for As and Zn, and to lesser extent for Cr. The data analysis techniques used enabled the identification of sites with anthropogenic pollution and the recognition of regional pattern in HSs distribution.","PeriodicalId":55272,"journal":{"name":"Carpathian Journal of Earth and Environmental Sciences","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Journal of Earth and Environmental Sciences","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.26471/cjees/2022/017/235","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The EU Water Framework Directive requires the monitoring and evaluation of surface water sediment quality based on the assessment of risk posed by contamination on the biotic receptors. Fluvial sediments are important receptors of hazardous substances (HSs) pollution from the upstream catchment areas in the Danube River Basin (DRB). For the development of systematic sediment quality monitoring and evaluation, the Drava River region on the border of Hungary and Croatia was selected as a test area representative of lowland hydromorphological conditions. Overbank (floodplain) sediments and river bottom sediments (stream sediments) were sampled at two depths at 9 locations in the test area. Eight heavy metal(oid)s were analyzed As, Cd, Cr, Cu, Hg, Ni, and Zn as hazardous substances. The sediment quality assessment was carried out according to the 2013/39/EU Directive and EU Water Framework Directive standards. Most of the analysed HS concentrations in river bottom sediment and overbank (floodplain) sediments fall within the limits of environmental quality standards (EQS). Results show that there is no significant differences in metal(oid) HS concentrations among the various sediment types and between shallow (0-5cm) and deeper (stream sediment: 5-10cm; floodplain sediment: 40-50cm) sediment which suggests that the large lowland Drava River fluvial system is an extensive single fluvial system with homogeneous distribution of sediments and the associated contaminants. Specifically, the studied sediments in the tributaries of the Drava River do not seem to be contaminated with metal(oid) hazardous substances but at certain sites concentrations are elevated above the environmental limit values, especially for As and Zn, and to lesser extent for Cr. The data analysis techniques used enabled the identification of sites with anthropogenic pollution and the recognition of regional pattern in HSs distribution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于欧盟水框架指令的低地河流底泥质量评价。以多瑙河流域德拉瓦河地区为例
欧盟水框架指令要求在评估污染对生物受体构成的风险的基础上监测和评估地表水沉积物质量。河流沉积物是多瑙河流域上游集水区有害物质污染的重要受体。为开展系统的泥沙质量监测和评价,选择匈牙利和克罗地亚边境的德拉瓦河地区作为低地水文形态条件代表性的试验区。在试验区9个地点的2个深度取样了河岸(洪泛平原)沉积物和河底(溪流)沉积物。分析了砷、镉、铬、铜、汞、镍、锌等8种重金属有害物质。沉积物质量评价依据2013/39/EU指令和欧盟水框架指令标准进行。分析的河底沉积物和河滩(洪泛平原)沉积物中HS浓度大部分在环境质量标准(EQS)范围内。结果表明:不同沉积物类型间、浅层(0 ~ 5cm)与深层(水系沉积物:5 ~ 10cm;洪泛平原沉积物:40-50cm),这表明大低地德拉瓦河河流系统是一个广泛的单一河流系统,沉积物和相关污染物分布均匀。具体来说,德拉瓦河支流的沉积物似乎没有受到金属(类)有害物质的污染,但在某些地点,浓度高于环境限值,特别是砷和锌,铬的浓度较低。所使用的数据分析技术能够识别人为污染的地点,并识别HSs分布的区域模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
25.00%
发文量
42
审稿时长
12-24 weeks
期刊介绍: The publishing of CARPATHIAN JOURNAL of EARTH and ENVIRONMENTAL SCIENCES has started in 2006. The regularity of this magazine is biannual. The magazine will publish scientific works, in international purposes, in different areas of research, such as : geology, geography, environmental sciences, the environmental pollution and protection, environmental chemistry and physic, environmental biodegradation, climatic exchanges, fighting against natural disasters, protected areas, soil degradation, water quality, water supplies, sustainable development.
期刊最新文献
Hydrogeological Investigations of Groundwater and Surface Water Interactions in the Berg River Catchment, Western Cape, South Africa Comparison of Machine Learning Methods for Satellite Image Classification: A Case Study of Casablanca Using Landsat Imagery and Google Earth Engine SAR Change Detection Algorithm Combined with FFDNet Spatial Denoising Hyperspectral Inversion and Analysis of Zinc Concentration in Urban Soil in the Urumqi City of China Maximizing Oil Palm Yield: Innovative Replanting Strategies for Sustainable Productivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1