A Novel Porous Graphene Scaffold Prepared Using Freeze-drying Technique for Orthopedic Approaches: Fabrication and Buckling Simulation Using GDQ Method
{"title":"A Novel Porous Graphene Scaffold Prepared Using Freeze-drying Technique for Orthopedic Approaches: Fabrication and Buckling Simulation Using GDQ Method","authors":"Shahin Foroutan, M. Hashemian, A. Khandan","doi":"10.22068/IJMSE.17.4.62","DOIUrl":null,"url":null,"abstract":"In this article, a novel bio-nanocomposite sample made of sodium alginate polymer, graphene nanosheets and wollastonite powder were produced using freeze-drying technique. The samples were mechanically and biologically evaluated using tensile strength and biological test. The phase and topological characterization were conducted by performing X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies. Subsequently, using Euler-Bernoulli and Timoshenko beam (EBT and TBT) theories, the buckling response of the porous bionanocomposite soft tissue were analyzed with respect to graphene content. In order to solve the governing equations a sufficient numerical solution is proposed. Elastic modulus and mass density of the porous bionanocomposite are extracted from the experimental tests. The obtained results indicated the sample with 1 wt.% graphene sheet showed proper mechanical and biological features. Therefore, the sample with 1 wt.% graphene sheet can be used as potential case for light weight bone substitute applications.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJMSE.17.4.62","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 13
Abstract
In this article, a novel bio-nanocomposite sample made of sodium alginate polymer, graphene nanosheets and wollastonite powder were produced using freeze-drying technique. The samples were mechanically and biologically evaluated using tensile strength and biological test. The phase and topological characterization were conducted by performing X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies. Subsequently, using Euler-Bernoulli and Timoshenko beam (EBT and TBT) theories, the buckling response of the porous bionanocomposite soft tissue were analyzed with respect to graphene content. In order to solve the governing equations a sufficient numerical solution is proposed. Elastic modulus and mass density of the porous bionanocomposite are extracted from the experimental tests. The obtained results indicated the sample with 1 wt.% graphene sheet showed proper mechanical and biological features. Therefore, the sample with 1 wt.% graphene sheet can be used as potential case for light weight bone substitute applications.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.