Enhancement of the three-dimensional interfacial layer of a rocky desertification soil using a red mud-based fertilizer

IF 1.5 4区 农林科学 Q4 SOIL SCIENCE Canadian Journal of Soil Science Pub Date : 2023-08-11 DOI:10.1139/cjss-2023-0013
Jun-Shiang Cheng, Mingqin Huang, Xiong Yan
{"title":"Enhancement of the three-dimensional interfacial layer of a rocky desertification soil using a red mud-based fertilizer","authors":"Jun-Shiang Cheng, Mingqin Huang, Xiong Yan","doi":"10.1139/cjss-2023-0013","DOIUrl":null,"url":null,"abstract":"Abstract Red mud, a solid waste of alumina extraction from bauxite, was used as a compost carrier to prepare a geological fertilizer. It was amended at proportions of 0, 5%, 10%, 15% and 50% by weight (g/kg) to improve a rocky desertification soil (classified as lime soil) productivity. Through the simulation of different rain intensity (15, 50, and 90 mm/h) with three precipitation rates (1000, 2000, 3000 mm), soil chemical and physical properties, such as soil organic matter (SOM), total nitrogen (TN), ammonia nitrogen (AN), nitrate nitrogen (NN), total potassium (TK), available potassium (AK), total phosphorus (TP), available phosphorus (AP), bulk density and aggregates were tested and analyzed. In addition, a three-dimensional evaluation and analysis of the improvement attributed to the geological fertilizer was conducted. The results showed that the soil loss could be maintained in the range of 19%–72% under rainfall intensities. In addition, the reduction rate of soil clay content was less than 20%, and the lowest reduction rate of SOM, TN, TP and other nutrient was only 4% at the application rate of 5%–50%. The BD of the 0–20 cm top soil decreased progressively from 1.2 to 0.9 g/cm3, while the water-stable aggregate volume increased by 45%–76%. The red mud-based fertilizer enhanced the ability of the rocky desertification soil to resist rainfall erosion and infiltration in amended soil profiles. Considering the trends of nutrient losses and effects on the soil structure, the application rate of 15% by weight (g/kg) was best for improving the rocky desertification soil productivity.","PeriodicalId":9384,"journal":{"name":"Canadian Journal of Soil Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1139/cjss-2023-0013","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Red mud, a solid waste of alumina extraction from bauxite, was used as a compost carrier to prepare a geological fertilizer. It was amended at proportions of 0, 5%, 10%, 15% and 50% by weight (g/kg) to improve a rocky desertification soil (classified as lime soil) productivity. Through the simulation of different rain intensity (15, 50, and 90 mm/h) with three precipitation rates (1000, 2000, 3000 mm), soil chemical and physical properties, such as soil organic matter (SOM), total nitrogen (TN), ammonia nitrogen (AN), nitrate nitrogen (NN), total potassium (TK), available potassium (AK), total phosphorus (TP), available phosphorus (AP), bulk density and aggregates were tested and analyzed. In addition, a three-dimensional evaluation and analysis of the improvement attributed to the geological fertilizer was conducted. The results showed that the soil loss could be maintained in the range of 19%–72% under rainfall intensities. In addition, the reduction rate of soil clay content was less than 20%, and the lowest reduction rate of SOM, TN, TP and other nutrient was only 4% at the application rate of 5%–50%. The BD of the 0–20 cm top soil decreased progressively from 1.2 to 0.9 g/cm3, while the water-stable aggregate volume increased by 45%–76%. The red mud-based fertilizer enhanced the ability of the rocky desertification soil to resist rainfall erosion and infiltration in amended soil profiles. Considering the trends of nutrient losses and effects on the soil structure, the application rate of 15% by weight (g/kg) was best for improving the rocky desertification soil productivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用红泥基肥料增强石漠化土壤的三维界面层
以铝土矿提取氧化铝固体废弃物赤泥为堆肥载体,制备地质肥料。分别按0、5%、10%、15%和50%的重量(g/kg)对石漠化土壤(石灰土)进行改良,提高其生产力。通过模拟不同降雨强度(15、50和90mm/h)和3种降水速率(1000、2000、3000mm),测试和分析了土壤有机质(SOM)、全氮(TN)、氨氮(AN)、硝态氮(NN)、全钾(TK)、速效钾(AK)、全磷(TP)、速效磷(AP)、容重和团聚体等土壤理化性质。此外,还对地质肥料的改良作用进行了三维评价和分析。结果表明,在降雨强度下,土壤流失量可保持在19 ~ 72%的范围内。此外,在施用5-50%时,土壤粘粒含量的降低率小于20%,SOM、TN、TP等养分的最低降低率仅为4%。0 ~ 20 cm表层土的BD由1.18 g/cm3逐渐降低至0.86 g/cm3,而水稳性团聚体体积增加了45 ~ 76%。改良后的石漠化土壤对降雨侵蚀和入渗的抵抗能力增强。综合考虑土壤养分流失趋势和对土壤结构的影响,以15% (g/kg)的施用量提高石漠化土壤生产力效果最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Journal of Soil Science
Canadian Journal of Soil Science 农林科学-土壤科学
CiteScore
2.90
自引率
11.80%
发文量
73
审稿时长
6.0 months
期刊介绍: The Canadian Journal of Soil Science is an international peer-reviewed journal published in cooperation with the Canadian Society of Soil Science. The journal publishes original research on the use, management, structure and development of soils and draws from the disciplines of soil science, agrometeorology, ecology, agricultural engineering, environmental science, hydrology, forestry, geology, geography and climatology. Research is published in a number of topic sections including: agrometeorology; ecology, biological processes and plant interactions; composition and chemical processes; physical processes and interfaces; genesis, landscape processes and relationships; contamination and environmental stewardship; and management for agricultural, forestry and urban uses.
期刊最新文献
How Does No-till Affect Soil-Profile Distribution of Roots? miyo wîcêhtowin “good relations”: reckoning with the relationship between Indigenous Peoples and soil science in Canada Analytical and Experimental Evaluation of Two-Layered Unsaturated Sand Bearing Capacity Impacts of conservation agriculture on soil C and N stocks and organic matter fractions: comparing commercial producer fields with a long-term small-plot experiment in Brown Chernozems of Saskatchewan Soil surface greenhouse gas emissions and hydro-physical properties as impacted by prairie cordgrass intercropped with kura clover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1