{"title":"CMOS VDIBAs-Based Single-Resistance-Controlled Voltage-Mode Sinusoidal Oscillator","authors":"K. L. Pushkar, G. Singh, R. Goel","doi":"10.4236/CS.2017.81002","DOIUrl":null,"url":null,"abstract":"In this communication, a new single-resistance controlled sinusoidal oscillator (SRCO) has been presented. The presented SRCO uses two voltage differencing inverting buffered amplifiers (VDIBAs), one resistor and two capacitors in which one is grounded (GC) and the other one is floating (FC). The proposed structure offers the following advantageous features: 1) independent control of oscillation condition (OC) and oscillation frequency (OF); 2) low passive and active sensitivities and 3) very good frequency stability. The non-ideal effects of the VDIBA on the proposed oscillator have also been investigated. The proposed SRCO has been tested for its robustness using Monte-Carlo simulations. The check of the validity of the presented SRCO has been established by SPICE simulations using 0.18 μm TSMC technology.","PeriodicalId":63422,"journal":{"name":"电路与系统(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"电路与系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/CS.2017.81002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this communication, a new single-resistance controlled sinusoidal oscillator (SRCO) has been presented. The presented SRCO uses two voltage differencing inverting buffered amplifiers (VDIBAs), one resistor and two capacitors in which one is grounded (GC) and the other one is floating (FC). The proposed structure offers the following advantageous features: 1) independent control of oscillation condition (OC) and oscillation frequency (OF); 2) low passive and active sensitivities and 3) very good frequency stability. The non-ideal effects of the VDIBA on the proposed oscillator have also been investigated. The proposed SRCO has been tested for its robustness using Monte-Carlo simulations. The check of the validity of the presented SRCO has been established by SPICE simulations using 0.18 μm TSMC technology.