Data-driven decision making: new opportunities for DSS in data stream contexts

IF 2.8 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Journal of Decision Systems Pub Date : 2022-05-02 DOI:10.1080/12460125.2022.2071404
Nuria Mollá, C. Heavin, A. Rabasa
{"title":"Data-driven decision making: new opportunities for DSS in data stream contexts","authors":"Nuria Mollá, C. Heavin, A. Rabasa","doi":"10.1080/12460125.2022.2071404","DOIUrl":null,"url":null,"abstract":"ABSTRACT Traditionally, Decision Support Systems (DSS) data were stored statically and persistently in a database. Increasing volume and intensity of information and data streams create new opportunities and challenges for DSS experts, data scientists, and decision makers. Novel data stream contexts require that we move beyond static DSS modelling techniques to support data-driven decision-making. Implementing incremental and/or adaptive algorithms may help to solve some of the challenges arising from data streams. This research investigates the use of these algorithms to better understand how their performance compares with more traditional approaches. We show that an adaptive DSS engine has the potential to identify errors and improve the accuracy of the model. We briefly identify how this approach could be applied to unexpected highly uncertain decision scenarios. Future research considers new opportunities to pursue a multidisciplinary approach to adaptive DSS design, development, and implementation leveraging emerging machine learning techniques in tackling complex decision problems.","PeriodicalId":45565,"journal":{"name":"Journal of Decision Systems","volume":"31 1","pages":"255 - 269"},"PeriodicalIF":2.8000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Decision Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/12460125.2022.2071404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 3

Abstract

ABSTRACT Traditionally, Decision Support Systems (DSS) data were stored statically and persistently in a database. Increasing volume and intensity of information and data streams create new opportunities and challenges for DSS experts, data scientists, and decision makers. Novel data stream contexts require that we move beyond static DSS modelling techniques to support data-driven decision-making. Implementing incremental and/or adaptive algorithms may help to solve some of the challenges arising from data streams. This research investigates the use of these algorithms to better understand how their performance compares with more traditional approaches. We show that an adaptive DSS engine has the potential to identify errors and improve the accuracy of the model. We briefly identify how this approach could be applied to unexpected highly uncertain decision scenarios. Future research considers new opportunities to pursue a multidisciplinary approach to adaptive DSS design, development, and implementation leveraging emerging machine learning techniques in tackling complex decision problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动决策:数据流环境下DSS的新机遇
摘要传统上,决策支持系统(DSS)数据是静态持久地存储在数据库中的。信息和数据流的数量和强度不断增加,为DSS专家、数据科学家和决策者带来了新的机遇和挑战。新的数据流上下文要求我们超越静态DSS建模技术,支持数据驱动的决策。实现增量和/或自适应算法可能有助于解决数据流带来的一些挑战。这项研究调查了这些算法的使用,以更好地了解它们与更传统的方法相比的性能。我们证明了自适应DSS引擎有可能识别错误并提高模型的准确性。我们简要介绍了如何将这种方法应用于出乎意料的高度不确定的决策场景。未来的研究考虑了新的机会,利用新兴的机器学习技术来解决复杂的决策问题,寻求多学科的自适应DSS设计、开发和实施方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Decision Systems
Journal of Decision Systems OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
6.30
自引率
23.50%
发文量
55
期刊最新文献
Public acceptance of smart home technologies in the UK: a citizens’ jury study Perceptions of facilitators towards adoption of AI-based solutions for sustainable agriculture I am therefore, I do: a fit perspective of decision-making styles and business intelligence usage AI: A knowledge sharing tool for improving employees’ performance Data-driven decision making in advanced manufacturing Systems: modeling and analysis of critical success factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1