Takeshi Iwashita, Kota Ikehara, Takeshi Fukaya, T. Mifune
{"title":"Convergence acceleration of preconditioned conjugate gradient solver based on error vector sampling for a sequence of linear systems","authors":"Takeshi Iwashita, Kota Ikehara, Takeshi Fukaya, T. Mifune","doi":"10.1002/nla.2512","DOIUrl":null,"url":null,"abstract":"In this article, we focus on solving a sequence of linear systems that have identical (or similar) coefficient matrices. For this type of problem, we investigate subspace correction (SC) and deflation methods, which use an auxiliary matrix (subspace) to accelerate the convergence of the iterative method. In practical simulations, these acceleration methods typically work well when the range of the auxiliary matrix contains eigenspaces corresponding to small eigenvalues of the coefficient matrix. We develop a new algebraic auxiliary matrix construction method based on error vector sampling in which eigenvectors with small eigenvalues are efficiently identified in the solution process. We use the generated auxiliary matrix for convergence acceleration in the following solution step. Numerical tests confirm that both SC and deflation methods with the auxiliary matrix can accelerate the solution process of the iterative solver. Furthermore, we examine the applicability of our technique to the estimation of the condition number of the coefficient matrix. We also present the algorithm of the preconditioned conjugate gradient method with condition number estimation.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2512","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we focus on solving a sequence of linear systems that have identical (or similar) coefficient matrices. For this type of problem, we investigate subspace correction (SC) and deflation methods, which use an auxiliary matrix (subspace) to accelerate the convergence of the iterative method. In practical simulations, these acceleration methods typically work well when the range of the auxiliary matrix contains eigenspaces corresponding to small eigenvalues of the coefficient matrix. We develop a new algebraic auxiliary matrix construction method based on error vector sampling in which eigenvectors with small eigenvalues are efficiently identified in the solution process. We use the generated auxiliary matrix for convergence acceleration in the following solution step. Numerical tests confirm that both SC and deflation methods with the auxiliary matrix can accelerate the solution process of the iterative solver. Furthermore, we examine the applicability of our technique to the estimation of the condition number of the coefficient matrix. We also present the algorithm of the preconditioned conjugate gradient method with condition number estimation.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.